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Abstract

It is known that Makinson and van der Torre’s basic I/O operation out2 can faithfully be “embedded” into
(or “encoded” in) classical modal logic. It is shown that an analogous result holds for the intuitionistic
variant of out2. The target of the embedding is the constructive modal logic CK that evolved through work
of Wijesekera, Mendler, de Paiva and Ritter. The very same translation that embeds out2 into classical
modal logic is used.
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1 Introduction

Due to Makinson and van der Torre [14,15], input/output (I/O) logic aims at gener-

alizing the theory of conditional obligation from modal logic [12,13] to the abstract

study of conditional codes viewed as relations between classical formulae. The

meaning of the normative concepts is given in terms of a set of procedures yielding

outputs for inputs. Detachment (or modus ponens) is the core mechanism of the

semantics being used. A number of I/O operations are studied in the aforemen-

tioned paper [14]. It is shown that they correspond to a series of proof systems

of increasing strength. I/O logic belongs to the category of what has been called

“norm-based semantics” by Hansen [11, p. 288]. The core idea is to explain the

principles of deontic logic, not by some set of possible worlds among which some

are ideal or at least better than others, but with reference to a set of explicit norms

or existing standards. There are at least two reasons for the recent growth of in-

terest in this approach. First, such a semantics allows one to remain neutral on a

number of controversial issues, like the question of whether norms bear truth-values

[14], or the question of whether normative statements are based on a maximization

process [22]. Second, the norm-based approach has proven to be a fruitful addition

to our understanding of key issues in deontic reasoning, like the question of how to
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model permissions [16,5,29], the issue of how to accommodate and resolve conflicts

between norms [19], and the question of how to reason about norm violation [15].

As is well-known, these issues highlighted limitations of so-called Standard Deontic

Logic (SDL) and its Kripke-type possible worlds semantics, with which philosophers

may be more familiar (see, e. g., [24]).

These developments will not be discussed in this paper. For an overview, see [21].

Here I will not go beyond the basic set-up used by Makinson and van der Torre in

their [14], except for the following. They use classical propositional logic as the base

logic. Parent & al. [20] study the effects of using intuitionistic propositional logic

(IPL). It is shown that three of the four standard, classically-based I/O operations

have a fully axiomatizable intuitionistic version. These are: the simple-minded I/O

operation out1; the basic I/O operation out2; and the reusable I/O operation out3.

Of these, the most striking one is undoubtedly out2. I will be primarily concerned

with it. From now onward I will refer to this one as outi2, where the superscript i

is mnemonic for “intuitionistic”. The basic idea is to replace in the semantic idiom

the notion of maximal consistent set by its intuitionistic counterpart, the notion

of saturated set. The main observation made in [20] is that one obtains the same

syntactic characterization of the input/output system, up to the meaning of the

connectives. This observation is shown to carry over to the intuitionistic versions

of out1 and out3. The question of whether it also applies to that of out4 is left

unanswered.

This paper will address another issue left open in [20]. Makinson and van der

Torre [14] show that their I/O operations out2 and out4 can be reformulated in

terms of modal logic. The essential idea is to prefix heads of rules with boxes and

apply a suitable modal logic. It is natural to ask if an analog result holds in an

intuitionistic setting. The answer to this question turns out to be positive, at least

for outi2. Admittedly this is a small point, but one (I believe) that is worth clarifying.

The intuitionistic modal logic into which outi2 will be embedded is the system called

CK (for constructive K) by Mendler and de Paiva [17] and de Paiva and Ritter [8].

CK is much like (the propositional fragment of) a prior system by Wijesekera [31].

They share the feature that 3 does not distribute over disjunction. But CK also

rejects the nullary version of the law of distributivity, ¬3⊥, aka 3⊥ → ⊥. On the

semantical side, this is made possible by allowing non-normal (or, as de Paiva and

colleagues call them, “fallible” or inconsistent) worlds in the models.

The main result in the paper is a faithful embedding theorem, which echoes the

one established by Makinson and van der Torre in the original setting. The theorem

is proved for the 3-free, first-degree fragment of CK–that is, the subsystem of CK
in which formulas do not contain occurrences of 3 or nested occurrences of 2. But

I will present the full system in order to make the paper self-contained.

Such a result is interesting in its own right, because it makes a bridge between

two independent frameworks. This bridge can be used to import results, ideas,

and techniques from one to the other. For instance, it can unlock the door to an

automation of the source logic. Benzmüller & al. [3] implement the standard I/O

operations out2 and out4 in Isabelle/HOL [18] via an implementation of their modal

translation, making use of the so-called shallow semantical embedding of modal

systems K and T into HOL [4]. The embeddings are encoded in Isabelle/HOL for
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automation.

The layout of this paper is as follows. Section 2 provides the reader with the

required background. Section 3 describes the embedding into CK. Section 4 ends

with a number of open issues.

2 Background

I start by explaining the basic idea underpinning the I/O framework. In I/O logic,

a conditional obligation is represented as a pair (a, x) of propositional formulas,

where a is the body (antecedent) and x is the head (consequent). Intuitively, (a, x)

may be read as “if a is the case, then x is obligatory”. A normative system N is

a set of such pairs. Let A be a set of formulas. The main construct has the form:

x ∈ out(N,A). Intuitively this can be read as follows: given input set A (state of

affairs), x (obligation) is outputted under norms N .

2.1 Intuitionistic Basic I/O Operation

This section describes the intuitionistic variant of the basic I/O operation out2
initially put forth by Makinson and van der Torre [14]. The operation is denoted

by outi2, where the superscript i stands for “intuitionistic”. This material is taken

from [20].

Throughout this paper, LIPL is the set of all formulas in the language of intu-

itionistic propositional logic. I use the system put forth by Thomason [30]. `IPL
is the derivability relation in this logic. CnIPL denotes the associated consequence

operation, viz. CnIPL(S) = {a : S `IPL a}, where S is a set of formulas in LIPL. A

set S of formulas is said to be consistent in IPL if there is a wff a such that S 6`IPL a.

Definition 2.1 [Saturated set, [30]] Let S be a non-empty set of formulas in LIPL.

S is said to be saturated if the following three conditions hold:

S is consistent in IPL (1)

a ∨ b ∈ S ⇒ a ∈ S or b ∈ S (S is join-prime) (2)

S `IPL a⇒ a ∈ S (S is closed under `IPL) (3)

Definition 2.2 implements the notion of (single-step) detachment or modus po-

nens. It is the modus operandi of the semantics.

Definition 2.2 [Image] Let A be a set of formulas. N(A) = {x : (a, x) ∈ N for

some a ∈ A}. For N(A), read “the N of A”.

Intuitively, N(A) gathers the heads of all the conditional obligations (a, x) in N

that are “triggered” by set A. As argued by Boghossian [6], detachment is part of

the meaning of a conditional statement. Hence the idea of making detachment the

core mechanism of the semantics. 2

2 Such a motivation is not in the original papers [14,15]. It is given and discussed in more detail in [22].
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Definition 2.3 [out i2, intuitionistic basic output]

out i2(N,A) =

{
∩{CnIPL(N(S)) : A ⊆ S, S saturated}, if A is consistent in IPL

CnIPL(h(N)), otherwise

where h(N) is the set of all heads of elements of N , viz. h(N) = {x : (a, x) ∈
N for some a}.

Our first observation follows at once from Definition 2.3 and the property of

monotony of `IPL. This property tells us that Γ `IPL x whenever ∆ `IPL x and

∆ ⊆ Γ.

Fact 2.4 out i2(N,A) ⊆ CnIPL(h(N)).

Put out i2(N) = {(A, x) : x ∈ out i2(N,A)}. This definition leads to an axiomatic

characterization that is much like those used for conditional logic. The specific rules

of interest here are described below. They are formulated for a singleton input set

A (for such an input set, curly brackets will be omitted). The move to an input set

A of arbitrary cardinality will be explained in a moment.

(a, x) b `IPL a
SI

(b, x)

(a, x) x `IPL y
WO

(a, y)

(a, x) (a, y)
AND

(a, x ∧ y)

(a, x) (b, x)
OR

(a ∨ b, y)

SI and WO abbreviate “strengthening of the input” and “weakening of the out-

put”, respectively. IPL is known to be decidable, and thus the relation expressed by

each rule is decidable, as is usually required for the rules of an axiom system.

Given a set of rules, a derivation from a set N of pairs (a, x) is a sequence α1,..,

αn of pairs of formulas such that for each index 0 ≤ i ≤ n one of the following holds:

• αi is an hypothesis, i.e. αi ∈ N ;

• αi is (>,>), where > is a zero-place connective standing for ‘tautology’;

• αi is obtained from preceding element(s) in the sequence using one of {SI, WO,

AND, OR}.
All elements in the sequence are pairs of the form (a, x). Derivation steps done in

the base logic IPL are not part of it.

A pair (a, x) of formulas is said to be derivable from N if there is a derivation

from N whose final term is (a, x). This will be written as (a, x) ∈ derivi2(N).

When A is a set of formulas, derivability of (A, x) from N is defined as deriv-

ability of (a, x) from N for some conjunction a = a1 ∧ ... ∧ an of elements of A.

I understand the conjunction of zero formulas to be a tautology, so that (∅, a) is

derivable from N if and only if (iff) (>, a) is.

Let derivi2(N,A) = {x : (A, x) ∈ derivi2(N)}. We have:

Theorem 2.5 (Soundness and completeness) out i2(N,A) = deriv i
2(N,A)

Proof. This is [20, Theorem 13]. 2
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2.2 Constructive Modal Logic CK

This section describes the system of constructive modal logic called CK (for con-

structive K) by Mendler and de Paiva [17] and de Paiva and Ritter [8].

The language is denoted by LCK. It is obtained by adding to the language of

IPL the two modal operators 2 and 3. For simplicity’s sake, ⊥ is identified with a

privileged atomic sentence, as in so-called minimal logic.

Definition 2.6 A Kripke model of CK is a structure M = (W,≤, R, v), where W is

a non-empty set of possible worlds (or points), ≤ is a reflexive and transitive binary

relation on W , R is a binary relation on W , and v is a function assigning to each

propositional letter p a subset of W , viz v(p) ⊆ W . Furthermore, ≤ is required to

be hereditary with respect to propositional variables:

If w ≤ w′ and w ∈ v(p), then w′ ∈ v(p)

≤ is used to express the forcing condition for the arrow connective →, whilst R

(with a little help from ≤) is employed to articulate the forcing condition for the

modal operators 2 and 3.

Definition 2.7 [Forcing] Given a model M = (W,≤, R, v), and a world w ∈ W ,

the forcing relation M,w � a (read as “formula a is ‘forced’ at world w in model

M”) is defined by induction on the structure of a using the following clauses:

• M,w � p iff w ∈ v(p)

• M,w � >
• M,w � b ∧ c iff M,w � b and M,w � c
• M,w � b ∨ c iff M,w � b or M,w � c
• M,w � b→ c iff (∀w′) (w ≤ w′ ⇒ (M,w′ � b⇒M,w′ � c))
• M,w � 2b iff (∀w′) (w ≤ w′ ⇒ ∀u(w′Ru⇒M,u � b))
• M,w � 3b iff (∀w′) (w ≤ w′ ⇒ ∃u(w′Ru & M,u � b))

As usual I will drop reference to M , and write w � a, when it is clear what

model is intended.

A world w is said to be normal if w 6� ⊥, and non-normal (or fallible) if w � ⊥.

The following two constraints are placed on models:

If w is non-normal and w ≤ w′ or wRw′, then w′ is non-normal (c1)

If w is non-normal, then M,w � p for all propositional letters p (c2)

(c1) and (c2) imply that, for all formula a, M,w � a, whenever w is non-normal.

Following Fitting [10], Mendler and de Paiva [17] introduce a “hybrid” notion

of consequence, which distinguishes between global and local assumptions. Global

(or universal) assumptions are required to hold at all points in a given model, while

local assumptions are required to hold at a given point in that model. I will use a

local consequence relation instead. A formula a is said to be a semantic consequence

of A (notation: A |= a), whenever, for every model M , and for all worlds w in M , if
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all of A hold at w, then so does a. My reason for doing so is twofold. First, it will

simplify the arguments. Second, the contrast between global and local assumptions

will not play any role in subsequent developments.

CK comes with a Hilbert-style proof system, whose axioms consist of all the

validities of the intuitionistic propositional logic IPL together with

2(a→ b)→ (2a→ 2b) (K-2)

2(a→ b)→ (3a→ 3b) (K-3)

CK also has the rule of modus ponens and the rule of necessitation for 2. As usual,

`CK a indicates that a is a theorem in CK, and A `CK a indicates that the formula

a is in CK a deductive consequence of the set of (local) assumptions A. We have

A `CK a whenever there is a finite A′ ⊆ A such that `CK
∧
A′ → a. The limiting

case where
∧ ∅ = > is included.

The soundness and completeness theorem is stated below.

Theorem 2.8 A |= a iff A `CK a.

Proof. This is Mendler and de Paiva [17, Theorem 1]. 2

3 Modal Embedding Result

The intuitionistic analog of Lindenbaum’s lemma will be needed. It reads:

Lemma 3.1 Let A ∪ {a} ⊆ LIPL. If A 6`IPL a, then there is a saturated set S of

formulas (in LIPL) such that A ⊆ S and a 6∈ S.

Proof. This is [30, Lemma 1]. 2

The following observation will also come in handy.

Theorem 3.2 Let A be a non-empty set of formulas in LIPL. A is consistent in

CK if and only if A is consistent in IPL.

Proof. For the left-to-right direction, suppose A is consistent in CK. By Theo-

rem 2.8, A is satisfiable in a model M = (W,≤, R, v) of CK. That is, there is a

normal world w in M such that w |= x for all x ∈ A. Let Mw = (Ww,≤w, vw),

where

• Ww = {u ∈W : u is normal & w ≤ u}
• ≤w=≤ ∩(Ww ×Ww)

• vw(p) = v(p) ∩Ww for all propositional letters p

Mw is an ordinary Kripke model of IPL. An easy induction establishes that each

world in Mw forces the same formulas a ∈ LIPL as in M . Hence, A is satisfiable in

an ordinary Kripke model of IPL. By soundness, A is consistent in IPL.

The proof of the right-to-left direction is similar. Starting with a model M of

IPL in which A is satisfiable, one needs to get a model M ′ of CK in which A is also

satisfiable. M ′ shares W , ≤ and v with M . Its new component R is the identity

relation. In M ′, constraints (c1) and (c2) are trivially verified, because all the worlds

are normal. 2
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The very same translation that embeds the original I/O logic into classical modal

logic is used. The core idea is to convert each pair in N into an intuitionistic

implication whose head is prefixed with 2, and then use CK to calculate the output.

The main result in this paper is that such an embedding is faithful. The exact

statement of the result to be established is given by equation (4) where N2 = {a→
2x : (a, x) ∈ N}:

x ∈ deriv i
2(N,A)⇔ h(N) `IPL x and N2 ∪A `CK 2x (4)

The left-to-right (LTR) implication says that the translation “preserves” derivability

of outputs, while the right-to-left (RTL) implication says that no new outputs can

be derived. Below each direction is established in turn.

Theorem 3.3 (Faithfulness, LTR) If x ∈ deriv i
2(N,A), then h(N) `IPL x and

N2 ∪A `CK 2x.

Proof. Assume x ∈ deriv i
2(N,A). The claim h(N) `IPL x follows from Theorem 2.5

and Fact 2.4.

By definition of deriv i
2, (a, x) ∈ deriv i

2(N), for a conjunction a = a1 ∧ ... ∧ an of

elements in A. One shows that N2 ∪ {a} `CK 2x by a straightforward induction

on the length of the derivation of (a, x):

Base case: (a, x) has a derivation of length 1. In that case, either (a, x) is (>,>)

or (a, x) ∈ N . The claim N2 ∪ {a} `CK 2x holds, because each of > → 2> and

((a→ 2x) ∧ a)→ 2x is a theorem in CK;

Inductive step: (a, x) has a derivation of length n+1. The interesting case is when

(a, x) is obtained from earlier lines by a derivation rule. Only two 2-principles

are needed. One is the axiom K-2. It is needed to handle WO. The other is

(2a ∧2b)→ 2(a ∧ b). It is needed to handle AND, and is derivable in CK.

The claim N2 ∪ A `CK 2x follows from N2 ∪ {a} `CK 2x and the principle of

cumulative transitivity for `CK. This principle tells us that Γ ∪∆ `CK y whenever

Γ `CK b and ∆ ∪ {b} `CK y. 2

Theorem 3.4 (Faithfulness, RTL) If both h(N) `IPL x and N2 ∪ A `CK 2x,

then x ∈ deriv i
2(N,A).

Proof. I show the contrapositive. Assume x 6∈ deriv i
2(N,A) and h(N) `IPL x. To

show: N2 ∪ A 6`CK 2x. Our aim is to establish that N2 ∪ A 6|= 2x. The desired

conclusion, N2 ∪A 6`CK 2x, follows at once from this and the soundness half of the

completeness theorem for CK.

By Theorem 2.5, x 6∈ out i2(N,A). Then out i2(N,A) 6= CnIPL(h(N)), so by

Definition 2.3, A is consistent in IPL and out i2(N,A) = ∩{CnIPL(N(S)) : A ⊆
S, S saturated}. So, since x 6∈ out i2(N,A), there is some saturated set S ⊇ A with

x 6∈ CnIPL(N(S)). Define M = (W,≤, R, v) as follows:

• W = {w : w is a saturated set of formulas in LIPL}
• w ≤ u iff w ⊆ u
• wRu iff: for all (b, y) ∈ N , if b ∈ w, then y ∈ u
• v(p) = {w : p ∈ w}
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M is a model of CK. By construction, S ∈W . The following observation will come

in handy.

Claim 3.5 Let x be a formula in LIPL. For all w ∈W , x ∈ w iff M,w |= x.

Proof. [Proof of Claim 3.5] By induction on x. I consider only the case where x

is a conditional, b→ c, focusing on the proof of the right-to-left direction. Assume

b→ c 6∈ w. Since a saturated set is closed under `IPL, Definition 2.1, w 6`IPL b→ c.

By the deduction theorem, w ∪ {b} 6`IPL c. By Lemma 3.1, there is a saturated set

u such that w ∪ {b} ⊆ u and c 6∈ u. On the one hand, w ≤ u. On the other hand,

the inductive hypothesis yields u |= b and u 6|= c, which suffices for w 6|= b→ c. 2

Claim 3.6 below will help us establish the desired intermediate conclusion, viz.

N2 ∪A 6|= 2x.

Claim 3.6 The following holds in M :

For all a ∈ A,S |= a (5)

For all b→ 2y ∈ N2, S |= b→ 2y (6)

S 6|= 2x (7)

Proof. [Proof of Claim 3.6] (5) follows easily from Claim 3.5 and A ⊆ S. For (6),

let b → 2y ∈ N2. Let t be such that S ≤ t and t |= b. Let u and v be such that

t ≤ u and uRv. The formula b is in LIPL. By Claim 3.5, b ∈ t ⊆ u. Since (b, y) ∈ N
and uRv, y ∈ v. By Claim 3.5 again, v |= y, since y is in LIPL too. By the forcing

condition for 2, t |= 2y. By the forcing condition for →, S |= b → 2y. Hence, for

all b→ 2y ∈ N2, S |= b→ 2y.

For (7), recall that N(S) 6`IPL x. By Lemma 3.1, there is a saturated set t such

that N(S) ⊆ t and x 6∈ t. On the one hand, t ∈ W . On the other hand, x is a

formula in LIPL. So t 6|= x, by Claim 3.5. Let (b, y) ∈ N . Suppose b ∈ S. By

construction, y ∈ N(S) ⊆ t. Hence, y ∈ t, which suffices for SRt. Trivially S ≤ S.

By the forcing condition for 2, S 6|= 2x as required. 2

This concludes the proof of Theorem 3.4. 2

It is worthwhile to mention that the proofs of Theorems 3.3 and 3.4 also go

through in Wijesekera’s initial system. Thus, the proposed embedding works in both

systems. However, the proof of Theorem 3.4 does not carry over to the constructive

modal logic CS4 (see, e.g., [1,8]). CS4 is obtained by supplementing CK with the

T-axioms 2x → x, x → 3x as well as the S4-axioms 2x → 22x, 3x → 33x.

It is characterized by the class of models in which R is in addition reflexive and

transitive, and R and ≤ are such that (R◦≤) ⊆ (≤◦R) where ◦ denotes composition

of relations. In the model M used in the proof of Theorem 3.4, the latter constraint

is satisfied. But there is no guarantee that R is reflexive and transitive. Thus there

is no guarantee that M is a model of CS4.

One would like to know whether the embedding result extends to other systems

in the so-called intuitionistic “modal cube” introduced in [28] or its constructive

variant (See Figure 1). For a given system, call it S, to act as a substitute for CK,

its 3-free, first-degree fragment must coincide with that of CK. I conjecture that this
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Parent57:4 Modular Focused Proof Systems for Intuitionistic Modal Logics

IK IKB

IKB5
IK4

ID

IT

IS4 IS5

ITB

IDB

ID4
ID45

IK45

ID5

IK5

d : 2A ∏ 3A (Seriality)
t : (A ∏ 3A) · (2A ∏ A) (Reflexivity)
b : (A ∏ 23A) · (32A ∏ A) (Symmetry)
4 : (33A ∏ 3A) · (2A ∏ 22A) (Transitivity)
5 : (3A ∏ 23A) · (32A ∏ 2A) (Euclideanness)

Figure 1 The intuitionistic modal S5 cube and the five constituent axioms.

di�erent distinct logics that can be arranged in a cube, the so-called S5-cube. (There are
fewer than 32 logics because of redundant sets such as {t, 5} and {b, 4} that both yield the
logic IS5.) The intuitionistic variant of the cube is shown on the left in Figure 1.

For a given set X ™ {t, d, 4, b, 5}, we write IK+X for the logic that is obtained from IK by
adding the axioms in X. A formula A is said to be X-valid i� it is a theorem of IK+X.1 In
addition, we define the 45-closure of X, denoted by X̂, as follows:

X̂ =

Y
__]
__[

X+4 if {b, 5} ™ X or if {t, 5} ™ X
X+5 if {b, 4} ™ X
X otherwise

If X = X̂ we also say that X is 45-closed. In this case we have that whenever the 4 axiom (or
the 5 axiom) is derivable in IK+X, then 4 (or 5 resp.) is already contained in X. Every logic
in the cube in Figure 1 can be defined by at least one 45-closed set of axioms [4].

3 Intuitionistic Modal Logic in Nested Sequents

This section is a summary of the nested sequent system NIK from [21]. The standard
formulation of NIK is based closely on the classical system KN [7, 4]. A nested sequent is a
finite tree where each node contains a multiset of formulas. In the classical case, this tree is
then endowed with an interpretation where, at each node, the interpretation of each child
subtree is boxed (using 2) and considered to be disjunctively related to that of the other
child subtrees and to the formulas at the node. This interpretation is purely symmetric. To
move to the intuitionistic case, we need to introduce an essential asymmetry between the
input (i.e., the left) formulas, which constitute the hypotheses, and the singleton output
(or the right) that constitutes the conclusion. Exactly one of the formulas in the tree will
therefore be annotated with a special mark, depicted with a superscript ¶, to signify that it
is the output; all other formulas will then be interpreted as inputs.

To be concrete, we will present nested sequents in terms of a grammar of input sequents
(written �) where the output formula does not occur, and full sequents (written �) where
the output formula does occur. When the distinction between input and full sequents is not
essential, we will use � to stand for either case. The relationship between parent and child
in the tree will be represented using bracketing ([ ]).

� ::= ÿ A,� [�1],�2 � ::= �, A¶ �, [�] � ::= � �

1 We slightly abuse the term valid as we do not refer to semantics in this paper.

(a) The intuitionistic cube (cf. [28])

ON NESTED SEQUENTS FOR CONSTRUCTIVE MODAL LOGICS 3

◦CS4

pppppp ◦CS5

pppppp

◦CT ◦CTB

◦CD4 ◦
CD45

◦
CD5

pppppp

◦CD

��������
hhhhhhhhhhhh ◦CDB

◦CK4

�������� ◦
CK45

◦
CKB5

��������
◦
CK5

pppppp

◦
CK

hhhhhhhhhhhh ◦
CKB

Figure 1: The constructive “modal cube”

Our work here is concerned with the proof theory of constructive K, denoted CK and its
various extensions with other common modal axioms. Like the classical and intuitionistic
variants, we consider the five axioms below:

d : �A⊃ ♦A
t : (A⊃ ♦A) ∧ (�A⊃A)
b : (A⊃�♦A) ∧ (♦�A⊃A)

4 : (♦♦A⊃ ♦A) ∧ (�A⊃��A)
5 : (♦A⊃�♦A) ∧ (♦�A⊃�A)

(1.2)

A priori, this gives us 32 different logics, but as in classical modal logic some of them
coincide, so that we get 15 logics,2 which are depicted in Figure 1.

In this work we attempt to give a unified cut-elimination for all logics obtained using
the framework of nested sequents [Kas94, GPT09, Brü09, Str13, Fit14], a generalisation of
Gentzen’s sequent calculus that allows sequents to occur within sequents. This approach
has previously been successful for the classical modal cube in [Brü09] and the intuitionistic
modal cube in [Str13] but, perhaps surprisingly, the step from intuitionistic to construc-
tive appears more involved than the one from classical to intuitionistic. While the cut-
elimination proofs in [Brü09] and [Str13] are more or less the same, we seem to require a
different method in the constructive setting. The reasons are that certain formulations of
some logical rules are no longer sound, and that we need an explicit contraction rule, along
with other structural rules that further complicate the process of cut-elimination.

Nonetheless we manage to obtain cut-elimination for the logics CK, CK4, CK45, CD,
CD4, CD45, CT, CS4, and CS5, but conjecture that our systems admit cut for all logics in
the cube. To our knowledge, previously only the logics CK, CT, CK4, and CS4 have received
analogous proof theoretic treatment [BdP00, HP07, MS11].

We point out an interesting observation that the b-axiom entails k3 and k5. While this
is likely already known to many in the community we could not find this result stated in
the literature, and so it is pertinent to raise it here. This arguably questions the “construc-
tiveness” of logics including b, and so the inclusion of such logics in the cube itself, but such
considerations are beyond the scope of this work.

Several previous attempts to deal with the proof theory of constructive modal logic have
appeared, however, the fundamental data structures of such calculi all seem to be special
cases of nested sequents. For example, the 2-sequents of [Mas92, Mas93] are a form of nested

2That there are at least 15 is inherited from the classical setting, and verifying that the classical equiva-
lences hold is by inspection of the classical proofs.

(b) The constructivist cube (cf. [2]).

Fig. 1. The modal cubes.

requirement is at least met for the systems between IK and IK45 in the intuitionistic

modal cube, and for the systems between CK and CK45 in its constructive variant.

The detailed verification of this claim must be postponed until another occasion.

4 Conclusion

I conclude this paper by highlighting a number of issues to consider in future research

besides the aforementioned one.

First, one would like to know if the embedding can be extended to the other

intuitionistic I/O operations defined in [20]. The basic reusable I/O operation out i4
is worth a mention. It is much like out i2, except that it also allows outputs to

be recycled as inputs. On the syntactical side, we have in addition the rule of

cumulative transitivity:

(a, x) (a ∧ x, y)
CT

(a, y)

Makinson and van der Torre [14] show that the classically based out4 can faithfully

be embedded into a number of modal systems containing the T-axiom. It would be

pleasant to be able to report that an analogous result holds for out i4, if one uses, e.g.,

the propositional fragment of Fitch’sM [9] which is CK plus the T-axioms 2x→ x,

x → 3x. However, the fact that out i4 still lacks an axiomatic characterization

analogous to Theorem 2.5 presents a serious obstacle to obtaining such a result.

Second, I have confined myself to unconstrained I/O logic, which is usually con-

sidered just a stepping stone towards a finer-grained account of normative reasoning.

The present account inevitably inherits the problems faced by unconstrained I/O

logic, which have led to the further developments alluded to in the introductory sec-

tion. In particular the present account puts aside the subtleties of contrary-to-duty

(CTD) obligations. This can be illustrated with the “white fence” scenario due to

Prakken and Sergot [27]: there should no fence; if there is a fence, it should be

white; there is a fence. The encoding in CK gives: N2 is {> → 2¬f, f → 2(w∧f)}
and A is {f}. One derives 2⊥, which is the opposite of what we want. Drawing on

analogous constructions in the logics of belief change and nonmonotonic inferences,

the traditional approach in I/O logic consists in constraining the I/O operations to

9
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avoid output that is inconsistent with the input [15]. However, the systems of con-

strained I/O logic do not have a known axiomatic characterization. Furthermore,

the (full join and meet) constrained I/O operations are in general nonmonotonic

with respect to the input set A. It is unclear how they can be encoded in CK, whose

consequence relation is monotonic. An alternative approach to CTDs has recently

been studied in Parent and van der Torre [22,23,26,25]. The unconstrained I/O op-

erations are defined in such a way that they are not closed under the consequence

relation of the base logic. Furthermore, some of these I/O operations have a built-in

consistency check, which filters out excess output. This yields variant proof systems

with neither the rule WO nor the zero-premise rule TAUT: 3

−
TAUT

(>,>)

The question remains open whether these variant systems have an intuitionistic

counterpart that can be embedded into some existing (non-normal) constructive

modal logic(s) or variant thereof [7].
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