
Handout Lecture 8: Non-monotonic logics
Xavier Parent and Leon van der Torre

University of Luxembourg

April 27, 2016

Abstract. This handout is devoted to non-monotonic
logics–a family of logics devised to model defeasible reasoning.
The focus is on the semantics for non-monotonic reasoning
based on preferential models.

1 Introduction
The term “non-monotonic logics” (in short, NMLs) covers a
family of logics developed in AI in order to capture and repre-
sent common-sense reasoning. One of the distinctive features
of common-sense reasoning is that it is defeasible, meaning
that the acquisition of new knowledge can cause earlier con-
clusions to be withdrawn.

Such logics are called non-monotonic, because they reject
the so-called principle of monotony. This is the principle,
where Γ is a set of formulas:

Γ ` φ⇒ Γ ∪ {ψ} ` φ (Mon)

When Γ is finite, (Mon) is equivalent to the law of strength-
ening of the antecedent, which (as we have seen in lecture 7)
is characteristic of material implication:

` ξ → φ ⇒ ` ξ ∧ ψ → φ (SA)

Thus, the distinctive feature of non-monotonic logics is that
the body of inferred knowledge does not grow monotonically
with the body of received knowledge.

Why reject (Mon), or equivalently, (SA)? This is because
in everyday life situations, available information is usually
incomplete. One still needs to be able to reason about such
situations, and make decisions.

Four examples of defeasible reasoning are given below. The
symbol “|∼” (snake) denotes the construct that is distinctive
of NMLs. For “φ |∼ ψ”, read “If φ, normally ψ”.

Reasoning based on generalizations allowing for ex-
ceptions

• bird |∼ flies
• bird, penguin 6|∼ flies

Reasoning based on normality Consequences are drawn
based on what is most likely to be the case:

• cake |∼ good
• cake, soap 6|∼ good

Reasoning by default Consequences are derived only be-
cause of lack of evidence to the contrary:

• cf. presumption of innocence (innocent until proven guilty)

Diagnosis (also called “abductive reasoning”) Conse-
quences are deduced as most likely explanations of a given
fact:

• gras wet, sunny |∼ sprinkler on
• gras wet, sunny, street wet 6|∼ sprinkler on

Classical logic is inadequate since it is monotonic.

2 Negation as failure
If you want a concrete example from computer science, think
of a logic programming language like Prolog. It uses non-
monotonic logic.

Remember that a program written in Prolog is a set of
sentences in logical form, expressing facts and rules about
some domain. This, we call it a “knowledge base” (in short,
KB). We use a Prolog program, by running queries. That
is, by asking questions about the information stored in the
knowledge base. Prolog answers queries using the following
assumption, known as the Closed World Assumption (CWA):

What cannot be shown to be true is false (CWA)

For example, if an airline database does not contain a seat
assignment for a traveler, so that it cannot be proved that the
traveler has checked in, it is assumed that the traveler has not
checked in. (CWA) translates into a rule called “Negation as
failure” (NAS), where the symbol ` means “is provable”:

If 6` φ then ` ¬φ (NAS)

This inference is not warranted in classical logic. A logic that
supports (NAS) is non-monotonic: a new fact may yield to
withdraw a previously obtained conclusion.

(NAS) has two uses, a trivial one and a non-trivial one.
First, a “yes or no” query always gets answered−this is its
trivial use. Second, (NAS) can be used to express and reason
about exceptions to the rules in the knowledge base−this is
its non-trivial use. Let me explain how this is done.

Consider the following small program:

penguin(opus). /* Opus is penguin */
eagle(hedwig). /* Hedwig is an eagle */
bird(X) :- eagle(X). /* an eagle is a bird */
bird(X) :- penguin(X). /* a penguin is a bird */

Here are a few queries one can run along with their answers:

?-penguin(opus). /* is Opus a penguin? */
true.
?-bird(opus). /* is Opus a bird?*/
true.
?-penguin(hedwig). /* is Hedwig a penguin?*/
false.

The last query illustrates the trivial use of (NAS). It cannot
be proved that “penguin(hedwig)” is true, and hence it is
considered as false.

Let us add the following rule–it is defeasible, because it
leaves room for exceptions:

fly(X) :- bird(X),\+ penguin(X).
/* a bird flies unless it is a penguin */

“/+” is the “not” operator, but its behavior is more subtle
than negation as defined in logic. Indeed its behavior is regi-
mented by (NAS). Compare:

?-fly(opus). /*Does Opus fly? */
false.
?-fly(hedwig). /* Does Hedwig fly? */
true.

Prolog’s query-answering procedures is based on modus-
ponens. In the logic programming notation, the rule of interest
is:

f ← b,¬p (1)

The query “?-fly(opus).” fails because Opus is known to be
an exception; modus-ponens cannot be applied:

` p MP?−→ 6` f NAS−→ ` ¬f

The query “?-fly(hedwig).” succeeds because Hedwig is not
known to be an exception; modus-ponens can be applied mod-
ulo (NAS);

6` p NAS−→ ` ¬p MP−→ ` ¬f

3 Preferential semantics
This section describes one of the most well-known semantics
for non-monotonic reasoning, the preferential semantics, due
to Shoham [7], Makinson [5, 6], Kraus, Lehman & Magidor
[2], and Lehmann & Magidor [4].

3.1 Preferential models
The language used in such an approach is based on conditional
expressions φ |∼ ψ, read as “Normally, if φ then ψ”, where φ
and ψ are formulas of propositional logic. From now onwards
the construct φ |∼ ψ will be referred to as a default rule, or
just a default.

Reasoning in such a framework means to be able, given a
set KB of such defaults, to derive new defaults.

Definition 1. A preferential model is a pair (W,<) where W
is a set of valuations v1, v2 ... on the propositional letters, and

< is a binary relation over W . Intuitively, one reads v1 < v2
as saying that v1 is (strictly) preferred over v2, because it
describes a more normal (more typical, more plausible, etc.)
situation.

Notes:
• W is not necessarily the entire set of all the valuations
• We use 1 and 0 (bold fonts) to denote the truth-values

“true” and “false”
• < is often called a preference relation
• One might allow for multiple copies of valuations, by in-

dexing valuations v by elements s of an arbitrary index set
S. We do not do it, and take the notion of valuation in its
usual sense, as a function from the set of all elementary
letters {p, q, ...} into {1, 0}

Definition 2. Given a preferential model (W,<) we say
φ |∼(W,<) ψ iff v(ψ) = 1 for every valuation v ∈ W that
is minimal (w.r.t. <) among those in W that satisfy φ. The
requirement of minimality means: there is no v′ ∈ W with
v′(φ) = 1 and v′ < v.

When φ |∼(W,<) ψ is the case, we say that the default φ |∼ ψ
holds in the preferential model (W,<), or just that φ |∼ ψ if
it is clear what model is intended.

Intuitively, Definition 2 says: φ |∼ ψ holds if ψ holds in the
preferred (most normal, most typical, etc) situations where φ
holds.

It can be convenient to express the definition in a more
compact manner. When W is a set of valuations and φ is a
formulas, write |φ|W for the set of all valuations in W that
satisfy φ, i.e. |φ|W = {v ∈ W : v(φ) = 1}. Write min<(|φ|W)
for the set of all minimal elements of |φ|W . In this notation,
φ |∼ ψ whenever min<(|φ|W) ⊆ |ψ|W .

Example 1 explains how to verify whether a set of defaults
holds in a given preferential model.

Example 1. Let (W,<) be such that

• W = {v1, v2, v3}, where
– v1(p) = 1 and v1(q) = 0
– v2(p) = 0 and v2(q) = 1
– v3(p) = 1 and v3(q) = 1

• v1 < v2 and v3 < v2

We have > |∼ p, because

• min<(|>|W) = min<({v1, v2, v3}) = {v1, v3}
• |p|W = {v1, v3}.

Hence:
min

<
(|>|W) ⊆ |p|W = {v1}

We also have ¬p |∼ q.

Note that in all these definitions, no constraints are placed
on the relation < over W . But to guide intuitions it is useful
to keep at the back of one’s mind the typical case that it is
both irreflexive, transitive, smooth and modular (alias virtu-
ally connected). Smoothness says: if v1 satisfies φ, then either
v1 ∈ min<(|φ|W) or there is v2 ∈ min<(|φ|W) with v2 < v1.
Modularity says that whenever v1 < v2 then either v1 < v3

or v3 < v2. A preferential model in which < meets these four
conditions is usually called a “ranked” model, because one
may equivalently use a ranking function associating to each
valuation a unique natural number, called its rank. Typically,
the most preferred (normal, typical, etc) valuations get rank
0, the second-most preferred ones get rank 1, the third-most
preferred ones rank 2, and so-forth.

Note that any irreflexive and transitive relation is also as-
symetric (never both v < v′ and v′ < v) and more generally
acyclic (neverv1 < v2 < ..., vn < v1, for n > 1).

Note also that, if W is finite, then < is necessarily smooth
(given transitivity of <).

Informally, we can describe a ranked preferential model by a
diagram with levels as we did for counterfactuals (cf. handout
7). For instance, here is a diagrammatic representation of the
ranked model given in Example 1:

ranking
v2 1

v1 v3 0

The convention is that valuations lower down in the order-
ing are more preferred (more normal, more typical, etc) than
those higher up, while those on the same level are incompara-
ble under <.1 Intuitively, all the valuations within the same
level have the same rank.

Instead of listing the valuations, it is also sometimes more
convenient to list the propositional letters that each valuation
satisfies, and use the bar notation for those it makes false:

pq

pq pq

Exercise 1. Show that antisymmetry of < follows from ir-
reflexivity and transitivity of <.

Exercise 2. Show that, if W is finite, then < is necessarily
smooth (given transitivity of <).

Exercise 3. Consider the following ranked preferential
model:

pqrs pqrs

pqrs pqrs pqrs

Show that p |∼ r, p ∧ q 6|∼ r, p ∧ ¬q |∼ r.

Exercise 4. Show that φ |∼ ψ does not imply φ ∧ φ′ |∼ ψ.

The proof-theory is similar to that for conditional logic. It
is known that the class of ranked preferential models corre-
sponds to the following system of rules, called system R (for
“Rational”):

REF
φ |∼ φ

φ |∼ ψ ` φ↔ φ′

LLE
φ′ |∼ ψ

φ |∼ ψ ` ψ → ψ′

RW
φ |∼ ψ′

φ |∼ ψ φ |∼ ψ′
AND

φ |∼ ψ ∧ ψ′

φ |∼ ψ φ′ |∼ ψ
OR

φ ∨ φ′ |∼ ψ
φ |∼ ψ φ |∼ ξ

CM
φ ∧ ξ |∼ ψ

1 Two valuations v and v′ are incomparable under <, if v 6< v′ and
v′ 6< v.

φ |∼ ψ φ 6|∼ ¬ξ
RM

φ ∧ ξ |∼ ψ
The abbreviations are read as follows: REF–reflexivity; LLE–
left logical equivalence; RW–right weakening; CM–cautious
monotony; RM–rational monotony. AND and OR are self-
explanatory.

Note that CM calls for smoothness, and RM calls for mod-
ularity.
Exercise 5. Show that the above rules are valid as long as <
meets the required properties as stated.

3.2 A more fine-grained approach:
lexicographic ordering

Preferential models as described in the previous section faces
what has been called the “drowning problem”. This one illus-
trates the difficulty to find the right balance between unre-
stricted strengthening of the antecedent and no strengthen-
ing at all. As Horty puts it, “what is needed [...] is a certain
amount of strengthening, but not too much” [1, p.56]. One
needs to find a middle way between these the aforementioned
two extremes, and this task is not as as straightforward as
one might think.

We first describe the drowning problem, and then present
one solution to it, in terms of lexicographic ranking, due to
Lehmann [3].

Figure 1. Moa: the only wingless bird that ever existed

Example 2 (Drowning problem). Suppose KB contains the
following

i) b |∼ f (most birds fly)
ii) b ∧ p |∼ ¬f (penguins do not fly)
iii) b |∼ w (birds have wings)

Strengthening of the antecedent should not hold in its plain
form−on pain of generating a contradiction. From i) one does
not want to be able to derive b ∧ p |∼ f . But a certain of
amount of strengthening of the antecedent is needed, because
from iii) one would like to be able to infer

iv) b ∧ p |∼ w (penguins have wings)

The intuition is that ii) overrides i), but not iii), so that one
should be able to conditionalize iii) to b ∧ p.

Here is a ranked preferential model in which all the defaults
in KB hold, and b ∧ p |∼ w does not.

bfpw

bfpw bfpw

bfpw

3.2.1 Procedure

Valuations are ranked based on two criteria:

(C1) number of defaults that they violate: the less, the better
(C2) seriousness of the violations: it is less serious to violate a

less specific default than a more specific default

To make it work, we need two definitions.

Definition 3. Given some KB, the violation set V of a val-
uation v ∈W is the set of defaults in KB that are falsified by
v:

V (v) = {φ |∼ ψ ∈ KB : v(φ) = 1, v(ψ) = 0}

Definition 4. φ |∼ ψ is more specific than φ′ |∼ ψ′ if ` φ→
φ′ but not conversely.

Semantically, given the ranked preferential models of KB,
the construction leads us to consider only those models in
which every valuation is considered as typical as possible, that
is, it is “pushed downward” in the model as much as possible,
modulo the satisfaction of KB.

Syntactically speaking, the conjunction of (C1) and (C2)
gives us a defeasible version of the law of strengthening of
the antecedent. If KB = {φ |∼ ψ}, then φ ∧ ξ |∼ ψ follows.
If KB = {φ |∼ ψ, φ ∧ ξ |∼ ¬ψ}, then φ ∧ ξ |∼ ψ does not
follow. In other words, one may apply the strengthening of
the antecedent principle, but only in the absence of evidence
to the contrary. (Cf. Exercise 6.)

Another way to put it is to say that the construction spec-
ifies how (RM) should be satisfied: we have φ |∼ ψ in KB;
in order to satisfy (RM) we have to add either φ |∼ ¬ξ or
φ ∧ ξ |∼ ψ. The procedure imposes that, whenever it is pos-
sible, we prefer the latter (that corresponds to a constrained
application of monotony) over the former.

Now, the construction. There are three main steps.

Step 1 Divide KB into levels of specificity. That is, define
a partition {∆i}0≤i≤m of KB, where each ∆i gathers the
defaults with the same degree of specificity. ∆0 enumerates
the most specific defaults, ∆1 the second most specific ones,
and so on, up to the most general ones.2

Step 2 Assign to each valuation v ∈ W a n-tuple
〈n0, n1, ...nm〉, where ni =| V (v)∩∆i |, for each i ∈ {0, ...,m}

Step 3 Rank the valuations using the lexicographic order-
ing on their associated n-tuples:

〈n0, n1, ...nm〉 < 〈n′0, n′1, ...n′m〉 iff
ni < n′i for the first i s.t. ni 6= n′i

3.2.2 Drowning problem revisited

We show how the construction resolves the drowning problem.

KB = {b |∼ f, b ∧ p |∼ ¬f, b |∼ w}

2 Lehmann uses a more complex definition than Definition 4. This
one suffices for present purposes.

Step 1 We get

∆0 = {b ∧ p |∼ ¬f} and ∆1 = {b |∼ f, b |∼ w}

Step 2 We get
b f p w V n-tuple

v1 1 1 1 1 {b ∧ p |∼ ¬f} 〈1, 0〉
v2 1 1 1 0 {b |∼ w, b ∧ p |∼ ¬f} 〈1, 1〉
v3 1 1 0 1 ∅ 〈0, 0〉
v4 1 1 0 0 {b |∼ w} 〈0, 1〉
v5 1 0 1 1 {b |∼ f} 〈0, 1〉
v6 1 0 1 0 {b |∼ f, b |∼ w} 〈0, 2〉
v7 1 0 0 1 {b |∼ f} 〈0, 1〉
v8 1 0 0 0 {b |∼ f, b |∼ w} 〈0, 2〉
v9 0 1 1 1 ∅ 〈0, 0〉
...

...
...

...
...

...
...

Step 3 We get the following ranking:

v2 4 〈1, 1〉
v1 3 〈1, 0〉

v6 v8 2 〈0, 2〉
v4 v5 v7 1 〈0, 1〉
v3 v9 − v16 0 〈0, 0〉

Note

min
<

(|b|W) = {v3}

min
<

(|b ∧ p|W) = {v5}

Hence the following conditionals hold:

b |∼ f b ∧ p |∼ ¬f b |∼ w

Also

b ∧ p |∼ w

We have resolved the drowing problem!

Exercise 6. Suppose the language contains three proposi-
tional letters p, q and r. Compare what happens in the fol-
lowing two situations under the lexicographic account.

KB = {p |∼ q}

KB = {p |∼ q, p ∧ r |∼ ¬q}

REFERENCES
[1] J. Horty, ‘Moral dilemmas and nonmonotonic logic’, Journal

of Philosophical Logic, 23(1), 35–65.
[2] S. Kraus, D. Lehmann, and M. Magidor, ‘Nonmonotonic rea-

soning, preferential models and cumulative logics’, Artificial
Intelligence, 44, 167–207, (1990).

[3] D. Lehmann, ‘Another perspective on default reasoning’, An-
nals of Mathematics and Artificial Intelligence, 15, 61–82,
(1995).

[4] D. Lehmann and M. Magidor, ‘What does a conditional knowl-
edge base entail?’, Artificial Intelligence, 55(1), 1–60, (1992).

[5] D. Makinson, ‘Five faces of minimality’, Studia Logica, 52(3),
339–379, (1993).

[6] D. Makinson, ‘General patterns in nonmonotonic reasoning’,
in Handbook of logic in art. intell. and logic programming,
volume 3, 35–110, Oxford University Press, Inc., New York,
NY, USA, (1994).

[7] Y. Shoham, Reasoning About Change: Time and Causation
from the Standpoint of Artificial Intelligence, MIT Press, Cam-
bridge, 1988.

