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Abstract. This handout is devoted to the logic of counterfactual
conditionals. The focus is on the the possible worlds similarity se-
mantics due to Lewis [6].

1 Introduction
A counterfactual conditional is a statement of the form “if p, then q”
where the antecedent (the if clause) p is known to be false. Typical
examples are:

(1) a. If the electricity had not failed, dinner would have been
ready on time

b. If the door were open, I would get the key I left in there
c. If you had looked into your pocket, you might have

found a penny

Grammatically, in English at least, they are often signaled by the
subjunctive mood in the antecedent and the auxiliary would/might in
the consequent.

B
The term “counterfactual” was coined by Goodman [4] in
reference to Chisholm [2] ’s notion of a “contrary-to-fact
conditional”.

Counterfactual conditionals are often contrasted with so-called in-
dicative conditionals:

(2) a. If Oswald did not kill Kennedy, someone else did
b. If Oswald had not kill Kennedy, someone else would

have

Clearly the two conditionals di↵er in meaning. (2a) is an indicative: it
signals that it is an open possibility that Oswald did not kill Kennedy,
and will be judged true by anyone who knows that Kennedy was
killed. (2b) is a counterfactual: it signals that it is taken for granted
that Oswald did kill Kennedy, and makes the somewhat dubious
claim that his assassination was inevitable.

However, we should be careful with suggestions from natural lan-
guage. There are some formally indicative counditionals that ex-
press counterfactuality. And the “subjunctive” marking doesn’t al-
ways mean counterfactuality. Examples:

(3) a. No Hitler, no A-bomb
b. If he has solved this problem, I’m the Queen of England
c. If Jones had taken arsenic, he would have shown just

exactly the same symptoms which he actually shows.

The first two examples shows that the subjunctive marking is not
necessary for counterfactuality. (3b) is an indicative. The third ex-
ample shows that the subjunctive marking is not even su�cient for
counterfactuality.

The study of counterfactual reasoning has given rise to an impor-
tant literature, both in philosophy and in computer science. Gins-
berg & Ginsberg [3] among others have stressed the importance of
counterfactual reasoning in AI. This kind of reasoning plays a role in
planning and diagnosis analysis (which requires identifying causes
of observed e↵ects among a set of possibilities). Halpern [5] has also
argued that counterfactual reasoning plays an important role in ana-
lyzing rationality in games. In deciding what to do at a given time, a
player must analyze what would have happened had he done some-
thing else.

There are close similarities between the logic of counterfactuaI
conditionals, some versions of nonmonotonic or defeasible inference
(as constructed in the 1980’s in the context of logics for artificial in-
telligence), belief or theory revision (especially in the 1985 paradigm
of Alchourrón, Gärdenfors and Makinson), updating (again, in arti-
ficial intelligence literature and especially in work of Katsuno and
Mendelzon) and the logics of conditional obligation (as put forth by
Hansson and van Fraassen in the early 1970’s). The connection be-
tween these di↵erent areas is discussed in length by Makinson [7].

Notoriously, counterfactual conditionals cannot be represented as
material conditionals, for the falsehood of the antecedent automati-
cally makes any material conditional true, which is certainly not the
case for these conditionals. Neither can they be represented as strict
implications, because strict implication satisfies a number of laws
that the counterfactual conditional does not, like the principle of tran-
sitivity (cf. section 2.3). Logicians have been working on the repre-
sentation of counterfactual conditionals for several decades, and have
developed a number of mathematical constructions to model them.
This handout focuses on one of the most well-known approaches to
counterfactuals, the possible worlds similarity approach due to Lewis
[6]. It is itself closely related to a semantics first put forth by Stal-
naker [9].

The basic idea underpinning the account is perhaps best explained
with reference to Ramsey [8], who suggested the following proce-
dure for evaluating an indicative conditional–this has become known
as “Ramsey’s test”.

“If two people are arguing ‘if � will  ?’ and both are in doubt
as to �, they are adding � hypothetically to their stock of knowl-
edge and arguing on that basis about  . ” [8, p. 143]

Several strategies for extending Ramsey’s test into a full-blooded the-
ory of conditionals have been developed. The semantics described in
this handout is one of them. It is based on Stalnaker’s own inter-
pretation of Ramsey’s test in terms of minimal changes. Stalnaker is
aware that this procedure is completely specified by Ramsey only in
the case in which the agent has no opinion about the truth value of
the antecedent of the conditional that is being evaluated. Therefore
Stalnaker asks himself how the procedure suggested by Ramsey can
be extended to cover counterfactuals. His answer is:



“According to [Ramsey’s] suggestion, your deliberation [...]
should consist of a simple thought experiment: add the an-
tecedent (hypothetically) to your stock of knowledge (or be-
liefs), and then consider whether or not the consequent is
true. Your belief about the conditional should be the same as
your hypothetical belief, under this condition, about the conse-
quent.” [9, p. 102]

The proposed procedure for determining if a conditional holds has
two steps. First, you update your stock of beliefs to accommodate for
the truth of the antecedent. This is done by making as few changes as
possible to your old beliefs. Next, you check whether the consequent
is among your new beliefs.

Ramsey’s test

A conditional is accepted if the consequent is true after
we add the antecedent (hypothetically) to our stock of
beliefs and make whatever minimal adjustments are re-
quired to maintain consistency.

2 The Lewis world-similarity semantics
2.1 Language
The language is generated by the following BNF:

� ::= p | ¬� | (� ^ �) | �Ä �

There is no prohibition against embedding counterfactual condi-
tionals within counterfactual conditionals. These are called “nested
counterfactuals”. Example:

(4) a. If I had bought a Botticelli from John and if I had noticed
afterwards it was a fake, I would have sued him

Other (modal) connectives are introduced by the abbreviations:

‘Might’ �Ñ  is ¬(�Ä ¬ )
‘Box’ ⇤� is ¬�Ä ?
‘Diamond’ ^� is ¬(�Ä ?)

2.2 SOS semantics
In this section we introduce “system of spheres”(SOS) semantics put
forth by Lewis [6].

Definition 1 (System of spheres, SOS). Let W be a non-empty set of
possible worlds (or states). A system of spheres is an assignment $
from W to a set of subsets of W, where for each w 2 W,1

• $w is centered on w: {w} 2 $w;
• $w is nested: for S ,T 2 $w, either S ✓ T or T ✓ S ;

The members of $w are called spheres around w. The first condi-
tion says that they are all “centered” around the base world w. The
second condition tells us that the spheres are “nested”, i.e., linearly
ordered. For any two spheres, one is included in the other. Because of
the third condition, [$w is itself a sphere around w; it is the largest,
or outermost sphere around w.

In a system of spheres, the worlds are intended to be ordered by
their relative similarity to the base world w; hence the smaller a

1 We write $w for $(w).

sphere is, the closer to w the worlds within that sphere are. Intu-
itively, the centering condition tells us that w is more similar to itself
than it is to any other worlds. (See section 2.4).

More constraints can be introduced. For the purpose of this hand-
out, we will not do it.

We may posit a two-place relation �w among worlds, regarded as
the ordering of worlds in respect of their comparative similarity to w.
This alternative modelling is discussed in more details in subsection
2.4

So-called Hamming distance is sometimes used as a means for
measuring the degree of similarity amongs worlds, and hence for
generating a system of spheres. We recall that the Hamming distance
between two possible worlds is given by the number of propositional
atoms on which they disagree.

Exercise 1. Show that a system of spheres is closed under union and
intersection.

Exercise 2. Show how to generate a system of spheres using the
Hamming distance between possible worlds.

Definition 2 (SOS model). A SOS model M = (W, $,V) is a tu-
ple where W is a non-empty set of possible worlds, $ is a system of
spheres (as defined supra) and V is a valuation function.

Definition 3 (Truth at a world). Given a SOS model M = (W, $,V)
and a world w 2 W, we define the relation M,w ✏ � (reading: “world
w satisfies � in model M”) by induction on � using the following
clauses:

• M,w ✏ p i↵ w 2 V(p).
• M,w ✏ ¬� i↵ M,w 2 �
• M,w ✏ � ^  i↵ M,w ✏ � and M,w ✏  .
• M,w ✏ �Ä  i↵

a) ¬9S 2 $w9w0 2 S M,w0 ✏ �, or
b) 9S 2 $w9w0 2 S M,w0 ✏ � & (8w00 2 S ) (M,w00 ✏ �!  )

Call a world that makes � true a “�-world”, and a phere that con-
tains at least one �-world a �-permitting sphere. The evaluation rule
for the would-conditional makes �Ä  true in two cases:

• a): no �-permitting sphere (vacuous case);
• b):  holds at every �-world in the smallest �-permitting sphere

(non-vacuous, principal case).

Intuitively, a) says that � is impossible or counter-possible. Our
intuitive gloss of b) presupposes the so-called Limit Assump-
tion. It is the assumption that as we take smaller and smaller
antecedent-permitting spheres we eventually reach a limit: the small-
est antecedent-permitting sphere, and in it the closest antecedent-
worlds. Let [�] be the truth-set of � in model M, viz. {w 2 W :
M,w |= �}. Formally, the limit assumption may be stated thus:

[�] \ ([$w) , ; ) \{S 2 $w : S \ [�] , ;} , ; (LA1)

Note that, if there are only finitely many spheres around w, then the
limit assumption automatically holds. It may not be obvious why the
existential quantification over spheres appearing in clause b) entails
that  holds in the smallest sphere in which � holds. This is exer-
cise 3.

A diagrammatic representation of these two cases is given by Fig-
ures 1 and 2.

Remark 1 (Sub-clause a). The account renders all counterfactuals
with impossible antecedents true. It is a straightforward matter to





Figure 1. Vacuous truth Figure 2. Non-vacuous truth

rephrase the truth-conditions forÄ in such a way that all counter-
factuals with impossible antecedents are trivially false. The choice
between the two evaluation rules is merely a matter of convenience.

Remark 2 (Sub-clause b). This sub-clause implements Ramsey’s
test. The notion of possible world is the ontological analogue of
the notion of stock of beliefs. The move to the closest/most similar
world(s) correspond to a minimal adjustment of the agent’s stock of
beliefs to let the antecedent in.

Remark 3 (Sub-clause b, ct’d). The closest antecedent-world need
not be unique. (This is one of the points of disagreements between
Lewis and Stalnaker.) One may motivate the need to allow for multi-
ple closest antecedent-worlds by means of the following example:

(5) If Bizet and Verdi had been compatriots, they would have been
either French or Italian

The notions of validity, semantic consequence and satisfiability in
(a class of) models are defined as usual.

Proposition 1. The evaluation rules forÑ, ⇤ and^ are as follows:

• M,w ✏ �Ñ  i↵
a) 9S 2 $w9w0 2 S M,w0 ✏ �, and
b) 8S 2 $w

�
(9w0 2 S M,w0 ✏ �)) (9w00 2 S M,w00 ✏ � ^  )

�

• M,w ✏ ⇤� i↵ 8w0 2 [$i : M,w0 ✏ �
• M,w ✏ ^� i↵ 9w0 2 [$i : M,w0 ✏ �

Exercise 3. Explain why, given the limit assumption, the existential
quantifier over spheres appearing in clause b) entails that  holds in
the smallest sphere in which � holds.

Exercise 4. Explain the two ways that might arise for a counter-
factual � Ä  to be false (Hint: it all depends on whether or not
�Ä ¬ also holds.)

Exercise 5. LetÄ0 be likeÄ except they take opposite truth-value
when the antecedent is ‘impossible’. That is, the evaluation rule for
the former is obtained from that for the latter, by just leaving a) out.
Show that the two operators are inter-definable.

2.3 ComparingÄ with! / J
One can try to appreciate howÄ compares with material implica-
tion ! or strict implication J (fish hook),2 by contrasting the laws
that govern each. HereÄ appear to be weaker than! and J, in the
sense that the latter validates less laws than the formers.

Indeed, the distinctive feature ofÄ is that it does not satisfy the
following three laws, which are characteristic of! and J: strength-
ening of the antecedent; transitivity; and contraposition.

Below: some natural language examples showing that failure of
these laws would indeed be expected of any reasonable semantics of
counterfactual conditionals.
2 Remember that � J  is definitionally equivalent with ⇤(�!  ).

Transitivity:

If R had gone to the party, S would have gone
If S had gone, then T would have gone

If R had gone, then T would have gone

Strengthening of the antecedent:

If that match had been scratched, it would have lighted

If that match had been wet and scratched, it would have lighted

Contraposition:

If R had gone, then S would have gone

If S had not gone, then R would not have gone

Proposition 2. The law of Strengthening of the Antecedent

(�Ä  )! ((� ^ �0)Ä  )

is not valid.

Proof. Let s, w and l stand for ‘the match is scratched’, ‘the match
is wet’ and ‘the match lights up’. Put W = {w1,w2,w3} and $w1 =

{S 1, S 2, S 3}, where

w1 |= ¬s ^ ¬w ^ ¬l
w2 |= s ^ ¬w ^ l
w3 |= s ^ w ^ ¬l

S 1 = {w1}
S 2 = {w1,w2}
S 3 = {w1,w2,w3}

Intuitively w1 is the actual world, and w2 is closer to w1 than w3. We
have sÄ l holds at w1, but not (s ^ w)Ä l, because l holds in the
closest world in which s holds, but not in the closest world in which
s ^ w holds. ⇤

Exercise 6. Show that the principle of transitivity and that of con-
traposition fail forÄ.

2.4 Comparative similarity (CS) semantics
As mentioned, instead of working with a system of spheres, one may
work with a two-place relation w among worlds, regarded as the
ordering of worlds in respect of their comparative similarity to w.
For “w1 w w2”, read “w1 is at least as similar to w than w2”. The
strict relation <w is defined by w1 <w w2 whenever w2 ⇥w w1. Rw

denotes the sets of worlds accessible from w.

Definition 4 (Comparative similarity system). Call {Rw,w}w2W a
comparative similarity system if the following constraints are met:

• w is transitive and total (for all w0, w00 2 W, either w0 w w00 or
w00 w w0)

• w 2 Rw (self-accessibility)
• w , w0 ) w <w w0 (base world is always at the bottom)
• w0 < Rw ) (8w00 2 W) (w00 w w0) (inaccessible worlds are

always at the top)
• w0 2 Rw & w00 < Rw ) w0 <w w00 (accessible worlds are always

below the inaccessible worlds)

We can represent a CS ordering by a diagram with levels: the base
world is on the lowest level; all points on a lower level are (strictly)
more similar than those on a higher level; and all points on the same
level being are equally similar to the base world. See Figure 3.

As with systems of spheres, the Hamming distance can be used to
generate a CS ordering.
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Figure 3. CS ordering

Exercise 7. Show that totalness of w implies reflexivity of w. Re-
flexivity and transitivity of w translates each into a given di↵erent
property on <w. What are they?

Exercise 8. Explain how to define w using the notion of Hamming
distance.

Definition 5 (CS model). A CS model is like a SOS model, except
that $ is replaced with a comparative similarity system {Rw,w}w2W
as defined supra. The evaluation rule for the would-conditional is
rephrased thus:

• M,w ✏ �Ä  i↵
a) ¬9w0 2 Rw M,w0 ✏ �, or
b) 9w0 2 Rw M,w0 ✏ � and

8w00 (w00 w w0 ) M,w00 ✏ �!  )

Intuitively: � Ä  holds at w if either � is impossible or there is
a �-world accessible from w such that any world “below” it makes
�!  true.

Example 1. Consider the model M depicted in Figure 4. It must be
understood that all the worlds are accessible from w. We have (for
i 2 {1, ..., 4}):

M,w ✏ pi Ä pi

M,w ✏ ¬pi Ä pi+1

M,w ✏ (pi ^ pi+1)! (pi Ä pi+1)

Figure 4. Example

Exercise 9. Explain when a would-counterfactual is false at w.
(Hint: look at what happens when the statement appearing at the
right-hand side of the biconditional is negated.)

Exercise 10. A model is infinite if it has infinitely many worlds. Sup-
pose the set of propositional letters, call it Prop, is infinite too. Give
an infinite model similar to model M in example 1 in which the three
Ä-statements mentioned in this example remain true at w, for all pi

in Prop.

Proposition 3. The evaluation rules forÑ, ⇤ and^ are as follows:

• M,w ✏ �Ñ  i↵
a) 9w0 2 Rw M,w0 ✏ �, and
b) 8w0 2 Rw

�
if M,w0 ✏ � then

9w00 2 Rw(w00 w w0 & M,w00 ✏ � ^ ¬ )
�

• M,w ✏ ⇤� i↵ 8w0 2 Rw : M,w0 ✏ �
• M,w ✏ ^� i↵ 9lw0 2 Rw : M,w0 ✏ �

A more user-friendly evaluation rule is available. Given a set X,
let minw (X) be the subset of those elements of X that are minimal
under the relation w, viz.

min
w

(X) = {x 2 X : (8y 2 X)(y w x) x w y)}

The limit assumption mentioned above takes the form

[�] \ Rw , ; ) min
w

([�] \ Rw) , ; (LA2)

Intuitively, (LA) rules out infinite sequences of closer and closer �-
worlds. Given (LA), the evaluation rule for the would-conditional
may be rephrased thus:

• M,w ✏ �Ä  i↵
a) ¬9w0 2 Rw M,w0 ✏ �, or
b) minw ([�] \ Rw) ✓ [ ]

Intuitively: � Ä  holds at w if either � is impossible or  holds
in every world that is minimal under the relation w in the set of all
worlds that are both accessible from w and satisfy �.

Exercise 11. Show that the following formula is valid under the CS
semantics:

(�Ä  ) ^ (�Ä  0)! (�Ä ( ^  0))

Exercise 12. Give a counter-example to the laws of transitivity,
strengthening of the antecedent and contraposition under the CS se-
mantics.

2.5 Link with SOS models
The above two semantics are inter-derivable.

Call two models (with the same set of possible worlds) equivalent
if a world satisfies exactly the same formulae in both models.

Theorem 1. For every SOS model, there is an equivalent CS model.

Proof. Let M = (W, $,V) a SOS model. The CS model derived from
it is M0 = (W, {Rw,w}w2W ,V), where, for each w 2 W, Rw and w are
obtained thus:

• Rw = [$w

• w1 w w2 i↵: (8S 2 $w) (w2 2 S ) w1 2 S )

It is a straightforward matter to show that {Rw,w}w2W is a com-
parative similarity system. To show that the models are equivalent
amounts to showing that a possible world satisfies extactly the same
would-conditionals in both models. Details are omitted. ⇤



Theorem 2. For every CS model, there is an equivalent SOS model.

Proof. Let M = (W, {Rw,w}w2W ,V) be a CS model. The SOS model
derived from it is M0 = (W, $,V), where for each w, $w is {w0 : w0 <w

w00} : w0 2 Rw}. ⇤

Exercise 13. Fill in missing details in the proofs of Theo-
rems 1 and 2.

2.6 System VC

Definition 6. The proof system VC is axiomatized using the follow-
ing axioms and rules:

R1 Modus-ponens for!
R2 From ^n

i=1  i ! ⇠ infer ^n
i=1 (�Ä  i)! (�Ä ⇠)

R3 Interchange of logically equivalents
A1 Axioms of propositional logic
A2 �Ä �

A3 (¬�Ä �)! ( Ä �)
A4 (�Ä ¬ ) _ �((� ^  )Ä ⇠)$ (�Ä ( ! ⇠))

�

A5 (�Ä  )! (�!  )
A6 (� ^  )! (�Ä  )

The notions of proof, syntactical consequence and consistency are
defined as usual.

Below: an example of proof in VC.

1. `  ^  0 !  (PL)
2. ` (�Ä ( ^  0))! (�Ä  ) (1, R2)
3. `  ^  0 !  0 (PL)
4. ` (�Ä ( ^  0))! (�Ä  0) (3, R2)
5. ` (�Ä ( ^  0))! (�Ä  ) ^ (�Ä  0) (2,4, PL)

Remark 4. In VC, ⇤ satisfies the axioms and rules of the modal
system T.

Theorem 3. VC is sound with respect to i) the class of SOS models
and ii) the class of CS models.

Proof. By showing that the axioms are valid and the rules preserve
validity. ⇤

Theorem 4. VC is complete with respect to i) the class of SOS mod-
els and ii) the class of CS models.

Proof. Using the method of canonical models. ⇤

Remark 5. VC is also sound and complete with respect to the class
of SOS (resp. CS) models in which the limit assumption is met.

Theorem 5. VC has the finite model property w.r.t. the two seman-
tics described above, and thus the theoremhood problem in VC is
decidable.

Proof. Using the filtration method. ⇤
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