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1 Introduction

The topic of this handout is so-called standard deontic
logic (SDL). The key idea of SDL is to assume that there is
an analogy between the deontic notions “obligation” and
“permission” and the alethic modal notions “necessity”
and “possibility.” “φ is obligatory” is understood as φ is
true in all morally require situations, while “φ is neces-
sary” is understood as φ is true in all possible situations.
This leads to the development of deontic logic as a branch
of modal logic.

B

The label “standard” is a misnomer. SDL has been
a landmark system until the late 60s, when so-called
Dyadic Standard Deontic Logic (see handout DSDL
[5]) emerged as a new standard.

2 Language

Definition 1. Given a set P of propositional letters, the
language of standard deontic logic L is the smallest set
such that:

1. P ⊆ L.

2. if φ ∈ L, then ¬φ ∈ L.

3. if φ ∈ L and ψ ∈ L, then φ ∧ ψ ∈ L.

4. if φ ∈ L, then©φ ∈ L.

The boolean connectives ⊥, ∨, → and ↔ are intro-
duced in the usual way. Other abbreviations includes
Pφ ::= ¬© (¬φ) and Fφ ::=©¬φ.

L is equivalently represented by the following BNF:
for p range over P,

φ = p | ¬φ | φ ∧ φ | ©φ

The intended reading of ©φ is “φ is obligatory”. Pφ
and Fφ are read as “φ is permitted” and “φ is forbidden”
respectively.

B
The definition allows for iterated modalities like
©(p ∧ ©p). Mixed formulas like p ∧ ©q are also
allowed.

3 Relational semantics
In this section we introduce the relational semantics for
SDL.

Definition 2 (Relational model). A relational modelM =
(W,R, V ) is a tuple where:

• W is a (non-empty) set of possible worlds: s, t, . . .

• R ⊆W×W is a binary relation overW , subject to a
constraint of seriality: (∀s ∈ W )(∃t ∈ W ), (s, t) ∈
R.

• V : P 7→ 2W is a valuation function for propositional
letters such that V (p) ⊆W .

Here R is known as the relation of deontic alternative-
ness: (s, t) ∈ R means that t is an ideal alternative to s, a
world in which all the obligations true in s are obeyed.

Intuitively: a sentence of the form ©φ is satisfied at
a possible world just in case φ is satisfied at each of the
world’s ideal alternatives.

Definition 3 (Satisfaction). Given a relational model
M = (W,R, V ) and a world s ∈ W , we define the sat-
isfaction relation M, s � φ (read as “world s satisfies φ
in model M”) by induction on the structure of φ using the
following clauses

• M, s � p iff s ∈ V (p).

• M, s � ¬φ iff M, s 6� φ.

• M, s � φ ∧ ψ iff M, s � φ and M, s � ψ.

• M, s � ©φ iff for all t ∈ W , if (s, t) ∈ R then
M, t � φ.

Exercise 3.1.
(1) Work out the satisfaction rules for ∨ and→ in a rela-

tional model.

(2) Same question for P and F .

Solution:

(1) M, s � φ ∨ ψ iff M, s � φ or M, s � ψ.
M, s � φ→ ψ iff M, s 6� φ or M, s � ψ.

1



(2) M, s � Pφ iff there is t ∈ W such that (s, t) ∈ R
and M, t � φ.
M, s � Fφ iff for all t ∈ W , if (s, t) ∈ R then
M, t 6� φ.

Definition 4 (Validity). A formula φ is valid (notation:
� φ) whenever, for all relational models M = (W,R, V ),
and all s ∈W , M, s � φ.

Definition 5 (Consequence). Given a set of formulas Γ, a
formula φ is a consequence of Γ (notation: Γ � φ) when-
ever, for all relational model M = (W,R, V ), all s ∈W ,
if M, s � ψ for all ψ ∈ Γ, then M, s � φ.

Exercise 3.2. Explain in what sense the notion of validity
may be described as a limiting case of the notion of con-
sequence.
Solution: Validity is a limiting case of consequence in the
sense that a formula is valid iff it is the consequence of the
empty set. More formally, � φ iff ∅ � φ.

4 Axiomatisation and completeness

4.1 Axiomatisation
Definition 6. Let X be an arbitrary axiomatisation with
axioms Ax1, Ax2, ..., Axn and rules Ru1, Ru2, ...Ruk,
where each rule Ruj(j ≤ k) is of the form “From φ1, .
. . φjar

infer φj”. We call jar the arity of the rule. Then, a
derivation for φ within X is a finite sequence φ1, . . . φm
of formulas such that:

1. φm = φ;

2. every φi in the sequence is

(a) either an instance of one of the axioms
Ax1, Ax2, ...Axn

(b) or else the result of the application of one of
the rules Ruj(j ≤ k) to jar formulas in the se-
quence that appear before φi.

If there is a derivation for φ in X we write `X φ, or, if the
system X is clear from the context, we just write ` φ. We
then also say that φ is a theorem of X, or that X proves φ.

Definition 7. The axiomatisation of SDL consists the fol-
lowing axioms and rules.
Axiom schemes

All tautologies of propositional logic (PL)
© (φ→ ψ)→ (©φ→©ψ) (K)
© φ→ Pφ (D)

Rules

If ` φ and ` φ→ ψ then ` ψ (MP)
If ` φ then ` ©φ (Nec)

Given a set Γ of formulas, we say that φ is deriv-
able from Γ (written as Γ ` φ) if there are formulas
ψ1, . . . , ψn ∈ Γ such that ` (ψ1 ∧ . . . ∧ ψn) → φ. (In
case where n = 0, this means that ` φ.) A set Γ is incon-
sistent iff Γ ` ⊥. Otherwise Γ is consistent.

Example 4.1. Below is a derivation of©(p ∧ q)→©p.

1. ` ((p ∧ q)→ p) (PL)

2. ` ©((p ∧ q)→ p) (Nec), 1

3. ` ©((p ∧ q)→ p)→ (©(p ∧ q)→©p) (K)

4. ` (©(p ∧ q)→©p) (MP), 2,3

Exercise 4.1. Show that ` ((©(p ∧ q) ∧ Pp)→ Pq).
Solution:

1. ` ((p ∧ q)→ (¬q → ¬p)) (PL)

2. ` ©((p ∧ q)→ (¬q → ¬p)) (Nec) 1

3. ` ©((p ∧ q) → (¬q → ¬p)) → (©(p ∧ q) →
©(¬q → ¬p)) (K)

4. ` ©(p ∧ q)→©(¬q → ¬p) (MP) 2,3

5. ` ©(¬q → ¬p)→ (©¬q →©¬p) (K)

6. ` ©(p ∧ q)→ (©¬q →©¬p) (PL) 4,5

7. ` ©(p ∧ q)→ (¬©¬p→ ¬©¬q) (PL) 6

8. ` ©(p ∧ q)→ (Pp→ Pq) 7

9. ` ((©(p ∧ q) ∧ Pp)→ Pq) (PL) 8

4.2 Soundness and completeness theorem

Theorem 1 (Soundness, weak version). If ` φ then � φ

Proof. Left as exercise.

Theorem 2 (Completeness, weak version). If � φ then
` φ

Proof. Based on the method of canonical model construc-
tion. Details can be found in Chapter 2 of Chellas [2].

Theorem 3 (Soundness and completeness, strong ver-
sion). Γ � φ if and only if Γ ` φ
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5 Chisholm’s paradox
The original phrasing of the paradox by Chisholm [3] re-
quires a formalisation of the following scenario in which
the sentences are mutually consistent and logically inde-
pendent.

(A) It ought to be that Jones goes to the assistance of his
neighbours.

(B) It ought to be that if Jones goes to the assistance of
his neighbours, then he tells them he is coming.

(C) If Jones doesn’t go to the assistance of his neigh-
bours, then he ought not to tell them he is coming.

(D) Jones does not go to their assistance.

First attempt is inconsistent.

A1 ©g

B1 ©(g → t)

C1 ¬g →©¬t

D1 ¬g
Second attempt is not logically independent.

A2 ©g

B2 ©(g → t)

C2 ©(¬g → ¬t)

D2 ¬g
Third attempt is not logically independent either.

A3 ©g

B3 g →©t

C3 ¬g →©¬t

D3 ¬g
A fourth attempt based on B3 and C2 is missing as we
would derive nothing.

Example 5.1. Show that Γ = {A1, B1, C1, D1} has no
model, and thus it is inconsistent.

Solution. Assume there exists a relational model M =
(W,R, V ), and a world w1 ∈ W , that satisfies all the for-
mulas in Γ. Then M,w1 � ©g, M,w1 � ©(g → t),
M,w1 � ¬g →©¬t and M,w1 � ¬g.

FromM,w1 � ¬g andM,w1 � ¬g →©¬twe deduce
M,w1 � ©¬t. By seriality we know there is w2 ∈ W
such that (w1, w2) ∈ R. By the definition of© we know
M,w2 � ¬t, M,w2 � g, M,w2 � g → t, which is a
contradiction. a

Exercise 5.1. Show that the second and the third
formalisation of Chisholm’s paradox are not logically
independent.

Remark 5.1. What is a paradox? In the mathematical
or strong sense: a paradox is a contradiction. Russells
paradox in set-theory is of this sense. In the linguistic or
weak sense: a paradox is something predicted by the the-
ory, which a native speaker would not say. Example from
propositional logic: the law of commutativity of ∧ (it does
not apply when the conjuncts are interpreted sequentially).

In deontic logic, we had paradoxes of both types.
Chisholms paradox is closer to the strong sense.

Are paradoxes good or bad? As for paradoxes of the
first type, usually people agree that they are bad, and that
they should be resolved/avoided. Once spotted, they give
rise to new developments, as is the case with the Chisholm
example.

6 Deontic logic via reduction
In SDL, the operator© is viewed as primitive. One may
also define it in terms of an alethic modal operator and
a designated propositional constant. This is called reduc-
tion. In this section we introduce the reduction developed
by Anderson [1].

6.1 Language
Assume the language of modal logic is supplemented with
a distinguished propositional constant v read as a violation
has occurred. In more detail, given a set Φ of propositional
letters, and a propositional constant v such that v /∈ Φ, the
language of Anderson’s logic LA is the smallest set such
that:

1. Φ ∪ {v} ⊆ LA.

2. if φ ∈ LA, then ¬φ ∈ LA.

3. if φ ∈ LA and ψ ∈ LA, then φ ∧ ψ ∈ LA.

4. if φ ∈ LA, then �φ,♦φ ∈ LA.

The deontic operators are defined by:

• ©φ ::= �(¬φ→ v)

• Pφ ::= ♦(¬v ∧ φ)

6.2 Semantics
A relational model for Anderson’s logic is a tuple M =
(W,R,DEM,V ) such that

• W is a non-empty set
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• R ⊆W ×W
• DEM ⊆ W such that for all s ∈ W there is t ∈ W

such that (s, t) ∈ R and t /∈ DEM .

• V is a valutation function for propositional letters.

Let M = (W,R,DEM,V ), s ∈ W , satisfaction of
formulas of LA is defined as follows:

• M, s � p iff s ∈ V (p).

• M, s � v iff s ∈ DEM .

• M, s � ¬φ iff M, s 6� φ.

• M, s � φ ∧ ψ iff M, s � φ and M, s � ψ.

• M, s � �φ iff for all t ∈ W , if (s, t) ∈ R then
M, t � φ.

6.3 Axiomatisation
The axiomatisation of Anderson’s logic consists the fol-
lowing axioms and rules. We write `A φ for φ is a theo-
rem of Anderson’s logic.
Axioms schemes

All tautologies of propositional logic (PL)
�(φ→ ψ)→ (�φ→ �ψ) (K�)
♦¬v (♦ d)

Rules

If `A φ and `A φ→ ψ then `A ψ (MP)
If `A φ then `A �φ (Nec �)

6.4 Chisholm’s scenario via Anderson
Using Anderson’s reduction, the Chisholm’s scenario is
formalized as

A4 ©g
B4 �(g →©t)
C4 �(¬g →©¬t)
D4 ¬g
Example 6.1. Show that Anderson’s formalization of
Chisholm’s paradox is consistent/satisfiable.
Solution: The following is a relational model satisfies An-
derson’s formalization of Chisholm’s paradox:
M = (W,R,DEM,V ), W = {w1, w2}, R =
{(w1, w2), (w2, w2)}, DEM = {w1}, V (g) =
{w2}, V (t) = ∅. It can be verified that A4, . . . , D4 are
satisfied at M,w1.

Exercise 6.1. Does Anderson’s logic validate the D axiom
©φ→ Pφ ? Given a proof to your answer.
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Appendix

Neighborhood semantics
There is a generalization of the relational semantics, Chel-
las [2]’s minimal deontic logic.

Definition 8 (Minimal model). A minimal model M =
(W,N, V ) is a structure where W and V are as before,
and N , so-called neighborhood function, is a mapping
from W to sets of subsets of W (i.e. N(s) ⊆ 2W for each
s ∈W ).

Definition 9 (Satisfaction). Given a minimal model M =
(W,N, V ), and a world s ∈W , we define the satisfaction
relation M, s � φ as before, except for deontic formulas,
where:

M, s �©φ iff ||φ|| ∈ N(s)

Here ||φ|| = {t ∈W : M, t � φ}.
Validity and consequence are defined as in the relational

semantics.
The neighborhood approach allows for an extra degree

of freedom here. The obligation operator as defined in
Definition 9 is very weak. But extra constraints may be
put on N(s) in order to make the operator validate more
laws, as one thinks fit.

For an illustration, consider Chellas [2]’s minimal deon-
tic logic, which he calls system D.1 According to Chellas,
D is a more plausible system, because it has the law OD,
but not the law OD?:

¬©⊥ (OD)
¬© (ϕ ∧ ¬ϕ) (OD?)

OD expresses the seemingly uncontroversial principle
“ought” implies “can”. OD? rules out the possibility
of conflicts between obligations, which seems counter-
intuitive. In SDL, we have ` (¬©⊥)↔ (¬©(ϕ∧¬ϕ)).
This in fact applies to any normal modal logic of type K,
making it impossible to distinguish between OD? and OD,
and have one without the other.

Definition 10 (System D). The axiomatisation of System
D consists the following axioms and rules. We write `D φ
for φ is a theorem in D.
Axiom scheme

¬©⊥ (OD)

Rule

If `D φ→ ψ then `D ©φ→©ψ (ROM)

1We use calligraphic fonts to avoid confusion with the axiom with the
same name.

The relevant constraints to be placed on N are:

If U ⊆ V and U ∈ N(s) then V ∈ N(s)
(closure under superset)

∅ /∈ N(s) (no-absurd)

Exercise 6.2.
1) Show that ROM holds in view of the property of clo-

sure under superset.

2) Work out the evaluation rules for P and F in a mini-
mal model.

Tableaux
The so-called method of tableaux [4] provides an effi-
cient decision procedure for checking whether a formula is
valid. This is achieved by analyzing what it would take to
produce a counter-example. For φ to be valid, all attempts
at producing a counterexample for it must fail.

Notation:

• Tφ, s: φ is true at world s

• Fφ, s: φ is false at world s.

Principle Start by assuming that Fφ, s. Break Fφ, s into
its components up to the simplest ones, until a con-
tradiction is reached.

In PL, this creates a tree structure called tableau. In a
modal logic setting, we are not dealing with a single
tableau, but with sequences of tableaux.

All formulae with the same world label s are written in a
rectangle, called a tableau. The rules for the propositional
connectives refer to formulae within the same tableau. Ex-
ample:

T(φ ∧ ψ), s
Tφ, s
Tψ, s

F(φ ∧ ψ), s

Fφ, s Fψ, s

If Rst, we say that t is “auxiliary to” s (or “next to” s).

B
By the requirement of seriality of R, a tableau t al-
ways has an auxiliary one attached to it– be it t itself.

The rules for© are as follows:

F© φ, s

Rst (t new)
Fφ, t

T© φ, s

Rst

Tφ, t

The rule to the left always creates a new auxiliary tableau
(t must be new). The rule to the right incorporates the re-
quirement of seriality of R. It says: if an auxiliary tableau
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t has already been created, then fill it in with Tφ, t; other-
wise, create one such tableau (using a new t).

Some rules of propositional logic create a tree struc-
ture in a tableau. This yields to two alternative tableaux-
sequences. Example:

F© (φ ∧ ψ), s

Theorem 1 (Soundness, weak version). If ` ' then ✏ '

Proof. Left as exercise.

Theorem 2 (Completeness, weak version). If ✏ ' then ` '
Proof. Based on the so-called method of canonical model
construction. Details are omitted.

Theorem 3 (Soundness and completeness, strong version).
� ✏ ' if and only if � ` '
Proof. As per above.

Exercise 3.
1) Work out the proof of Theorem 1. (Hint: this requires

showing that the axioms are valid, and that the rules pre-
serve validity.)

2) Show that the D axiom may fail unless the relation of de-
ontic alternativeness is required to be serial.

3) Give an example of a well-known axiom that is usually
accepted for 2 (“necessary”), but not for � (Hint: the
axiom is valid only when R verifies a given property.)

4) Identify a constraint on R to validate the formula
�(�'! ').

Theorem 4 (Decidability). Theoremhood in SDL is decid-
able.

Proof. The proof is based on the so-called filtration method.
Details are omitted.

Tableaux
The so-called method of tableaux provides an efficient de-
cision procedure for checking when a formula is valid. This
is acheived by analyzing what it would take to produce a
counter-example. For ' to be valid, all attempts at produc-
ing a counterexample for it must fail.

Notation:

• T', s: ' is true at world s

• F', s: ' is false at world s.

Principle Start by assuming that F', s. Break F', s into its
components up to the simplest ones, until a contradiction
is reached.

In PL, this creates a tree structure called tableau. In a modal
logic setting, we are not dealing with a single tableau, but
with sequences of tableaux.

All formulae with the same world label s are written in
a rectangle, called a tableau. The rules for the propositional
connectives refer to formulae within the same tableau. Ex-
ample:

T(' ^  ), s
T', s
T , s

F(' ^  ), s

F', s F , s

The relation R acts as a successor function among tableaux.
One tableau may have several successors.

B
The requirement of seriality of R says that a tableau al-
ways has a successor–eventually itself.

The rules for � are as follows:

F � ', s

Rst (t new)
F', t

T � ', s

Rst

T', t

The rule to the left always creates a new tableau (t must be
new). The rule to the right incorporates the requirement of
seriality of R. It says: if a new tableau t has already been
created, then fill it in with T', t; otherwise, create one such
tableau (using a new t).

Some rules of propositional logic create a tree structure in
a tableau. This yields to two alternative tableaux-sequences.
Example:

F � (' ^  ), s

F(' ^  ), t

F', t F , t

Two alternative tableaux-sequences.
In one, t contrains F'. In the other,
it contains F .

A tableau is closed if it contains a pair of the form

...
T , s
F , s
⇥

A sequence of tableaux is closed if some term in it is closed.
A system of alternative tableaux-sequences is closed if each
of the alternative sequences in it are closed. A formula ' is
valid, if the construction for F', s gives a closed system of
alternative tableaux-sequences. This means that all the at-
tempts at providing a counterexample for ' fail.

The method is illustrated with the example of axiom K.

F � ('!  ) ! (�'! � ), s
T � ('!  ), s
F � '! � , s

T � ', s
F �  , s

F , t
T', t

T('!  ), t

F', t
⇥

T , t
⇥

F(φ ∧ ψ), t

Fφ, t Fψ, t

Two alternative tableaux-
sequences. In one, t contrains
Fφ. In the other, it contains Fψ.

A tableau is closed if it contains a pair of the form

...
Tψ, s
Fψ, s
×

A sequence of tableaux is closed if some term in it
is closed. A system of alternative tableaux-sequences is
closed if each of the alternative sequences in it are closed.
A formula φ is valid, if the construction for Fφ, s gives
a closed system of alternative tableaux-sequences. This
means that all the attempts at providing a counterexample
for φ fail.

The method is illustrated with the example of K:

F© (φ→ ψ)→ (©φ→©ψ), s
T© (φ→ ψ), s
F© φ→©ψ, s

T© φ, s
F© ψ, s

Theorem 1 (Soundness, weak version). If ` ' then ✏ '

Proof. Left as exercise.

Theorem 2 (Completeness, weak version). If ✏ ' then ` '
Proof. Based on the so-called method of canonical model
construction. Details are omitted.

Theorem 3 (Soundness and completeness, strong version).
� ✏ ' if and only if � ` '
Proof. As per above.

Exercise 3.
1) Work out the proof of Theorem 1. (Hint: this requires

showing that the axioms are valid, and that the rules pre-
serve validity.)

2) Show that the D axiom may fail unless the relation of de-
ontic alternativeness is required to be serial.

3) Give an example of a well-known axiom that is usually
accepted for 2 (“necessary”), but not for � (Hint: the
axiom is valid only when R verifies a given property.)

4) Identify a constraint on R to validate the formula
�(�'! ').

Theorem 4 (Decidability). Theoremhood in SDL is decid-
able.

Proof. The proof is based on the so-called filtration method.
Details are omitted.

Tableaux
The so-called method of tableaux provides an efficient de-
cision procedure for checking when a formula is valid. This
is acheived by analyzing what it would take to produce a
counter-example. For ' to be valid, all attempts at produc-
ing a counterexample for it must fail.

Notation:

• T', s: ' is true at world s

• F', s: ' is false at world s.

Principle Start by assuming that F', s. Break F', s into its
components up to the simplest ones, until a contradiction
is reached.

In PL, this creates a tree structure called tableau. In a modal
logic setting, we are not dealing with a single tableau, but
with sequences of tableaux.

All formulae with the same world label s are written in
a rectangle, called a tableau. The rules for the propositional
connectives refer to formulae within the same tableau. Ex-
ample:

T(' ^  ), s
T', s
T , s

F(' ^  ), s

F', s F , s

The relation R acts as a successor function among tableaux.
One tableau may have several successors.

B
The requirement of seriality of R says that a tableau al-
ways has a successor–eventually itself.

The rules for � are as follows:

F � ', s

Rst (t new)
F', t

T � ', s

Rst

T', t

The rule to the left always creates a new tableau (t must be
new). The rule to the right incorporates the requirement of
seriality of R. It says: if a new tableau t has already been
created, then fill it in with T', t; otherwise, create one such
tableau (using a new t).

Some rules of propositional logic create a tree structure in
a tableau. This yields to two alternative tableaux-sequences.
Example:

F � (' ^  ), s

F(' ^  ), t

F', t F , t

Two alternative tableaux-sequences.
In one, t contrains F'. In the other,
it contains F .

A tableau is closed if it contains a pair of the form

...
T , s
F , s
⇥

A sequence of tableaux is closed if some term in it is closed.
A system of alternative tableaux-sequences is closed if each
of the alternative sequences in it are closed. A formula ' is
valid, if the construction for F', s gives a closed system of
alternative tableaux-sequences. This means that all the at-
tempts at providing a counterexample for ' fail.

The method is illustrated with the example of axiom K.

F � ('!  ) ! (�'! � ), s
T � ('!  ), s
F � '! � , s

T � ', s
F �  , s

F , t
T', t

T('!  ), t

F', t
⇥

T , t
⇥

Fψ, t
Tφ, t

T(φ→ ψ), t

Fφ, t
×

Tψ, t
×

Exercise 6.3.
1) Define suitable rules for >, ∨,↔, and→.

2) Same question for P and F .

3) Show the validity of the following formula using
tableaux:

©(φ ∧ ψ)→ (©φ ∧©ψ)

6


