
Input/output logic

X. Parent, L. van der Torre, X. Sun
University of Luxembourg

October 26, 2015

1 Introduction

This handout deals with the input/output (I/O) logic de-
veloped by Makinson and van der Torre [2, 3, 4]. The
basic idea is to extend the theory of conditional norms
from modal logic to the abstract study of conditional codes
viewed as sets of relations between Boolean formulas.

The semantics is operational rather than truth-
functional. The meaning of the deontic concepts is given
in terms of a set of procedures yielding outputs for inputs.
The basic mechanism underpining these procedures is that
of detachment. The associated proof-theory is formulated
in terms of derivation rules operating on pairs of formulas
rather than individual formulas.

This handout focuses on the I/O analysis of the concept
of obligation as described in [2]. This is the simplest case;
no extra machinery is used to filter out the output. What is
delivered is (as Makinson [1] calls it) the “gross output”.

2 Preliminaries

Let L be the set of all the formulas of classical proposi-
tional logic. A normative system N is set of (ordered)
pairs (a, x) of formulas. Intuitively, a pair (a, x) denotes a
conditional obligation. (a, x) is read as “given a, it ought
to be that x”. a is called the body (or antecedent), and
x the head (or consequent). (>, x) denotes the uncondi-
tional obligation of x, where > is a tautology.

Given a set A of formulas (input set), we use the nota-
tion out(N,A) to denote the output of A under N . We
also use the equivalent notation (A, x) ∈ out(N). When
A is a singleton set, curly brackets are omitted.

B Do not confuse x ∈ out(N, a) with (a, x) ∈ N .

Definition 1 (Consequence). Cn(A) denotes the set of
logical consequences of A in classical propositional logic.
That is, Cn(A) = {x : A ` x} (for `, read ‘proves’).

Recall from the Bridges handout:

Theorem 1. Cn is a Tarskian operation, viz it satisfies the
properties:

A ⊆ Cn(A) (Inclusion)
A ⊆ B ⇒ Cn(A) ⊆ Cn(B) (Monotony)
Cn(A) = CnCn(A) (Idempotence)

Remark 1. Cn satisfies the property of compactness:

x ∈ Cn(A)⇒ ∃ finite A′ ⊆ A | x ∈ Cn(A′)

Definition 2 (Image). N(A) = {x : (a, x) ∈ N for some
a ∈ A}. For N(A), read “the N of A”.

Example 1.

N A N(A)

{(a1, x1), (a2, x2)} {a1} ?
{(a1, x1), (a2, x2)} {a1, x2} ?
{(a1, x1), (a2, x2)} {a1, a2} ?
{(a1, x1), (a2, x2)} ∅ ?

Theorem 2 (Monotony). A ⊆ B ⇒ N(A) ⊆ N(B).

Proof. In class.

EXERCISES

Exercise 2.1. Express the set of all the tautologies in the
Cn notation.

Exercise 2.2. Let N = {(a, x), (x, y), (x∧y, z)}. Calcu-
late N(N({a, x, y})).

Exercise 2.3. What is N(L)?

3 Simple-minded (out1)
The operation out1 (called “simple-minded”) spells out
the basic mechanism underpinning the operation of de-
tachment in the non-iterated case.

Definition 3. We define out1(N,A) as

Cn(N(Cn(A)))

out1(N) = {(A, x) : x ∈ out1(N,A)}.

Example 2. Let N = {(a, x), (a ∨ b, y)}. Put A = {a}.

A Cn(A) N(Cn(A)) out1
a Cn(a) {x, y} Cn(x, y)

Remark 1. x ∈ out1(N,A) says: A ` ∧ni=0ai and
∧ni=0xi ` x, where (a1, x1), ..., (an, xn) ∈ N .

1



Definition 4. (a, x) ∈ deriv1(N) (“(a, x) is deriv-
able from N ) whenever (a, x) is in the least superset
of N that includes (>,>) and is closed under the rules
{SI,AND,WO}.

(a, x) b ` a
SI

(b, x)

(a, x) x ` y
WO

(a, y)

(a, x) (a, y)
AND

(a, x ∧ y)

SI and WO abbreviate “strengthening of the input” and
“weakening of the output”, respectively.

Given a set A of formulas, (A, x) ∈ deriv1(N) when-
ever (a, x) ∈ deriv1(N) for some conjunction a of for-
mulas in A.

Put deriv1(N,A) = {x : (A, x) ∈ deriv1(N)}.

Example 3. Let N = {(a ∨ b, x)}. We have (b, x ∨ y) ∈
deriv1(N). Indeed:

1. (a ∨ b, x) Assumption
2. (b, x) 1, SI
3. (b, x ∨ y) 2, WO

Theorem 3. out1 validates {SI, AND, WO} (for input a).

B
That e.g. SI is validated means that x ∈ out1(N, b)
whenever x ∈ out1(N, a) and b ` a.

Proof. In class.

Corollary 1 (Soundness). deriv1(N) ⊆ out1(N).

Theorem 4 (Completeness). out1(N) ⊆ deriv1(N).

Proof. In class.

EXERCISES

Exercise 3.1. Show that OR fails for out1.

Exercise 3.2. Let N = {(a, x), (b, y), (a ∨ b, z)}. What
is out1(N, {a, b})? Let N = {(>, x)}. What is
out1(N, a)?

Exercise 3.3. Show that AND is valid. Show that CONT
(“contraposition”) is not valid.

(a, x)
CONT

(¬x,¬a)

Exercise 3.4. For N = {(>, x), (a, y ∧ z)}, do we have
(a, x ∧ z) ∈ deriv1(N)?

4 Basic (out2)
The operation out2 (called “basic”) injects (OR) into out1
so that reasoning by cases is supported. Throughout this
section, V is a set of formulas. We say that V extends
V ′ if V ′ ⊆ V , and that V is a proper extension of V ′ if
V ′ ⊂ V .

Definition 5. V is maximal consistent if

V 6` ⊥, and (1)
y 6∈ V ⇒ V ∪ {y} ` ⊥ (2)

Intuitively: V is consistent, and no proper extension of V
is consistent.

For some notation, MCS and MCE abbreviate “maxi-
mal consistent set”, and “maximal consistent extension”,
respectively.

Fact 1. If V is a MSC, then

Cn(V ) = V (3)
either b ∈ V or ¬b ∈ V (4)
if b ∨ c ∈ V then: b ∈ V or c ∈ V (5)

(3) says that V is closed under Cn. (4) and (5)
are called “¬-completeness” and “saturatedness” (or
“primeness”), respectively.

V is called complete if V is a MCS or equal to L.

Definition 6. We define out2(N,A) as

∩{Cn(N(V )) : A ⊆ V, V complete }

There is always at least one complete V extending A,
namely L itself.

Put out2(N) = {(A, x) : x ∈ out2(N,A)}.

Example 4. Let N = {(a, x), (b, x)} and A = {a ∨ b}.

V N(V ) Cn(N(V ))
L {x} Cn(x)

MCE of {a ∨ b} {x} Cn(x)

�

out2(N,A) = Cn(x).

Remark 2. Because V = Cn(V ), out2 may be rephrased
thus:

out2(N,A) = ∩{out1(N,V ) : A ⊆ V, V complete}

Definition 7. (a, x) ∈ deriv2(N) whenever (a, x) is in
the least superset of N that includes (>,>) and is closed
under the rules {SI, AND, WO, OR}, where OR is

(a, x) (b, x)
OR

(a ∨ b, x)

2



Put deriv2(N,A) = {x : (A, x) ∈ deriv2(N,A)}.

Theorem 5. out2 validates {SI, WO, AND, OR} (for in-
put a).

Proof. We only show OR. Let x ∈ out2(N, a) and x ∈
out2(N, b). To show: x ∈ out2(N, a ∨ b).

Let V be a complete set extending a ∨ b. By definition
of a complete set, i) either a ∈ V or ii) b ∈ V . In case i),
the assumption x ∈ out2(N, a) allows us to conclude x ∈
Cn(N(V )). In case ii), the assumption x ∈ out2(N, b)
allows us to conclude x ∈ Cn(N(V )). Either way, x ∈
Cn(N(V )), which suffices for x ∈ out2(N, a ∨ b).

Corollary 2 (Soundness). deriv2(N) ⊆ out2(N).

Theorem 6 (Completeness). out2(N) ⊆ deriv2(N).

Proof. See [2, Obs. 2].

EXERCISES

Exercise 4.1. Show out2 validates the rules of deriv1.

Exercise 4.2. Let N = {(a, x), (b, y)}. Show that (a ∨
b, x ∨ y) ∈ deriv2(N).

5 Reusable (out3)
The operation out3 (called “reusable output” ) generalizes
out1 to the iterated case.

Definition 8. We define out3(N,A) as

∩{Cn(N(B)) : A ⊆ B = Cn(B) ⊇ N(B)}

There is always at least one such B, namely L.

Define out3(N) = {(A, x) : x ∈ out3(N,A)}.

Example 5. Let N = {(a, x), (a ∧ x, y)} and A = {a}.
We have:

B N(B) Cn(N(B))
Cn(a, x, y) {x, y} Cn(x, y)

�

out3(N,A) = Cn(x, y).

Below: an inductive characterization of out3.

Definition 9 (Bulk increments, [5]). Define
outb3(N,A) = ∪ωi=0Ai where

A0 = out1(N,A)

Ai+1 = Cn(Ai ∪ out1(N,Ai ∪A))

Intuitively: output is continuously recycled as input, de-
taching heads of rules, whenever possible.

All the Ai’s are linearly ordered under ⊆.

Example 6. In Exa. 5, we have

A0 = Cn(x)

A1 = Cn(Cn(x) ∪ out1(N,Cn(x) ∪ {a}))
= Cn(Cn(x) ∪ Cn(x, y))

= Cn(x, y)

A2 = A1

...

Theorem 7. out3 and outb3 are equivalent.

Proof. This is [5, Th. 4.3.12 and Th. 4.3.13].

Definition 10. (a, x) ∈ deriv3(N) whenever (a, x) is in
the least superset of N that includes (>,>) and is closed
under the rules {SI, AND, WO, CT}, where CT abbrevi-
ates “Cumulative Transitivity”. This is the rule

(a, x) (a ∧ x, y)
CT

(a, y)

Put deriv3(N,A) = {x : (A, x) ∈ deriv3(N,A)}.

Remark 3. Plain transitivity is a derived rule.

(a, x)

(x, y)
SI

(a ∧ x, y)
CT

(a, y)

Theorem 8. out3 validates {SI, AND, WO, CT} (for in-
put a).

Proof. We only show CT. Let x ∈ out3(N, a) and y ∈
out3(N, a ∧ x). To show: y ∈ out3(N, a).

Let B | a ∈ B = Cn(B) ⊇ N(B). The assumption
x ∈ out3(N, a) yields x ∈ Cn(N(B)). But N(B) ⊆
B = Cn(B). By monotony for Cn, Cn(N(B)) ⊆
Cn(B), so that x ∈ Cn(B), hence x ∈ B, from which
one gets a ∧ x ∈ B. The assumption y ∈ out3(N, a ∧ x)
now yields y ∈ Cn(N(B)), which suffices for y ∈
out3(N, a).

Corollary 3 (Soundness). deriv3(N) ⊆ out3(N).

Theorem 9 (Completeness). out3(N) ⊆ deriv3(N).

Proof. See [2, Obs. 6].

EXERCISES

Exercise 5.1. Show that out3 validates SI.

3



6 Basic reusable (out4)
The operation out4 (called “basic reusable” ) injects (OR)
into out3 so that reasoning by cases is supported.

Definition 11. We define out4(N,A) as

∩{Cn(N(V )) : A ⊆ V ⊇ N(V ), V complete}

Define out4(N) = {(A, x) : x ∈ out4(N,A)}.

Definition 12. (a, x) ∈ deriv4(N) whenever (a, x) is in
the least superset of N that includes (>,>) and is closed
under the rules {SI, AND, WO, CT, OR}.

Put deriv4(N,A) = {x : (A, x) ∈ deriv4(N,A)}.

Theorem 10. out4 validates {SI, AND, WO, CT, OR} (for
input a)

Corollary 4 (Soundness). deriv4(N) ⊆ out4(N).

Theorem 11 (Completeness). out4(N) ⊆ deriv4(N).

Proof. See [2, Obs. 11].

7 Summary
Table 1 shows the I/O operations and the associated rules.

Table 1: I/O systems
Output operation Rules
Simple-minded (out1) {SI, WO, AND}
Basic (out2) {SI, WO, AND}+{OR}
Reusable s-m (out3) {SI, WO, AND}+{CT}
Reusable basic (out4) {SI, WO, AND}+{OR,CT}

References
[1] D. Makinson. On a fundamental problem of deon-

tic logic. In P. Mc-Namara and H. Prakken, editors,
Norms, Logics and Information Systems, pages 29–
53. IOS Press, Amsterdam, 1999.

[2] D. Makinson and L. van der Torre. Input-output log-
ics. Journal of Philosophical Logic, 29:383–408,
2000.

[3] D. Makinson and L. van der Torre. Constraints for
input/output logics. Journal of Philosophical Logic,
30(2):155–185, 2001.

[4] D. Makinson and L. van der Torre. Permission from
an input/output perspective. Journal of Philosophical
Logic, 32:391–416, 2003.

[5] A. Stolpe. Norms and Norm-System Dynamics.
PhD thesis, Department of Philosophy, University of
Bergen, Norway, 2008.

4


