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1 Chisholm’s paradox
The note of standard deontic logic (SDL) [11] discusses
Chisholm’s paradox:

(A) It ought to be that Jones goes to the assistance of his
neighbours.

(B) It ought to be that if Jones goes to the assistance of
his neighbours, then he tells them he is coming.

(C) If Jones doesn’t go to the assistance of his neigh-
bours, then he ought not to tell them he is coming.

(D) Jones does not go to their assistance.

The set of sentencesA4−D4 is a consistent representa-
tion in SDL (extended with an alethic modality), such that
none of the sentences can be derived from the other ones.

A4 ©g

B4 �(g →©t)

C4 �(¬g →©¬t)

D4 ¬g

A drawback of the SDL representation A4 −D4 is that
it does not represent that ideally, the man goes to the as-
sistance and tells. Moreover, there does not seem to be a
similar solution for the following variant of the scenario:

(AB) It ought to be that Jones goes to the assistance of his
neighbours and he tells them he is coming.

(C) If Jones doesn’t go to the assistance of his neigh-
bours, then he ought not tell them he is coming.

(D) Jones does not go to their assistance.

Moreover, SDL only distinguishes between ideal and
non-ideal worlds, whereas many ethical dilemmas are
based on trade-offs between violations, or multiple lev-
els of violation. The challenge is thus how to extend the
semantics of SDL in this regard. For example, one can
add distinct modal operators for primary and secondary
obligations, where a secondary obligation is a kind of
repair obligation. From A5 − D5 we can only derive
©1t ∧©2¬t, but this is not a contradiction.

A5 ©1g

B5 ©1(g → t)

C5 ¬g →©2¬t

D5 ¬g

However, it may not always be easy to distinguish primary
from secondary obligations, for example it may depend on
the context whether an obligation is primary or secondary.
Many people therefore put as an additional requirement
for a solution of the paradox that B and C are represented
in the same way. Finally, the distinction between©1 and
©2 is insufficient for extensions of the paradox that seem
to need also operators like ©3, ©4, etc, such as the fol-
lowing E and F.

(E) If Jones does not go to the assistance and he tell them
he is coming, then he should apologize afterwards.

(F) If Jones does not go to the assistance and he tell them
he is coming and he does not apologize afterwards,
then . . .

2 Dyadic standard deontic Logic
Dyadic standard deontic logic (DSDL) provides an alter-
native representation of Chisholm’s paradox. The follow-
ing figure visualizes a bird’s eye view on DSDL and vari-
ous related formalisms.
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Inspired by rational choice theory in the sixties,
preference-based semantics for DSDL became popular at
the end of the sixties (by, for example, Danielsson [3],
Hansson [5], van Fraassen [4], Spohn [13]). Various other
formal approaches build on rational choice theory and
dyadic deontic logic, such as:

• rational choice theory: Sen [12].
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• logic for counterfactuals: Lewis [7].

• non-monotonic logic: KLM systems [6] .

For more information on the interplay between these ar-
eas, see Makinson’s comparison [8].

2.1 Language
Definition 1. Given a set Φ of propositional letters. The
language of dyadic standard deontic logic LD is the small-
est set such that:

1. Φ ⊆ LD.

2. if φ ∈ LD, then ¬φ,�φ ∈ LD.

3. if φ ∈ LD and ψ ∈ LD, then φ ∧ ψ ∈ LD.

4. if φ, ψ ∈ LD, then©(φ/ψ) ∈ LD.

We let ©φ := ©(φ/>), P (φ/ψ) := ¬ © (¬φ/ψ) and
♦φ := ¬�¬φ. Other boolean cases are defined as usual.

LD is equivalently represented by the following BNF:
for p range over Φ,

φ ::= p | ¬φ | φ ∧ φ | �φ | ©(φ/φ)

The intended reading of �φ is “φ is settled as true”,
©(φ/ψ) is “φ is obligatory, given ψ”. P (φ/ψ) is “φ is
permitted, given ψ”, and ♦φ is “possibly φ”.

B
Iteration of deontic modality is allowed. For example
©(B/© (B/A) ∧A) is a formula in LD.

if one fails to pay his taxes, then one ought to be fined. a

2.2 Semantics
In this section we introduce the preference-based seman-
tics as defined by Åqvist [2].

Definition 2. A preference model M = (W,≥, V ) is a
tuple where:

• W is a non-empty set of possible worlds.

• ≥ is a reflexive, transitive relation over W satisfying
the following limitedness requirement: if ||φ|| 6= ∅
then {x ∈ ||φ|| : (∀y ∈ ||φ||)x ≥ y} 6= ∅. Here
||φ|| = {s ∈W : M, s � φ}. 1

s > s′ is short for s ≥ s′ and s′ 6≥ s.

• V is a standard propositional valuation such that for
every propositional letter p, V (p) ⊆W .

s ≥ s′ is understood as s is at least as good as s′.

1Unlike Åqvist, we do not require ≥ to be connected. Parent [10]
shows that connectedness does not modify the set of validities.

Definition 3 (Satisfaction). Given a preference model
M = (W,≥, V ) and a world s ∈ W , we define the satis-
faction relation M, s � φ by induction on the structure of
φ using the following clauses:

• M, s � p iff s ∈ V (p).

• M, s � ¬φ iff not M, s � φ.

• M, s � φ ∧ ψ iff M, s � φ and M, s � ψ.

• M, s � �φ iff for all s′ ∈W , M, s′ � φ.

• M, s � ©(ψ/φ) iff for all s′, if s′ ∈ Best(||φ||),
then M, s′ � ψ. Here for a set of worlds Q,
Best(Q) = {s ∈ Q : s ≥ s′, for all s′ ∈ Q}.

M, s � φ is read as “world s satisfies φ in model M”.

Definition 4 (Validity). A formula φ is said to be valid, if
for all preference modelM and all state s inM ,M, s � φ.

Definition 5 (Consequence). Given a set Γ of formulas,
we say that φ is a consequence of Γ (written as Γ � φ)
iff for all model M , all state s in M , if M, s � ψ for all
ψ ∈ Γ, then M, s � φ.

The obligations involved in Chisholm’s paradox can be
represented by a preference ordering, for example:

g ∧ t > g ∧ ¬t > ¬g ∧ ¬t > ¬g ∧ t

Extensions like E and F can be incorporated by refining
the ordering.

Chisholm’s quartet can be represented in DSDL as fol-
lows:

A6 ©g

B6 ©(t|g)

C6 ©(¬t|¬g)

D6 ¬g

The first example shows how to verify whether a deon-
tic formula is satisfied in a model .

Example 2.1. Let M = (W,≥, V ) be where W =
{s1, s2}, s1 > s2 and V (g) = {s1}. Show that ©g is
satisfied in M .

Solution. M, s1 � ©g because Best(||>||) = {s1} and
M, s1 � g. a

Exercise 2.1. Let M = (W,≥, V ) such that W =
{s1, s2, s3}, s1 > s2 > s3, V (g) = {s2, s3} and
V (t) = {s2}. Show that©(t|g) is satisfiable in M .

The second example illustrates satisfiability of a set S of
formulas. This means constructing a model, and a world
in it, at which all the formulas in S are true.
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Example 2.2. Show that {©g,©(t|g)} is satisfiable.

Solution. Let M = (W,≥, V ) such that W = {s1, s2},
s1 > s2, V (g) = {s1}, V (t) = {s1}. We have M, s1 �
©g and M, s1 �©(t|g). a

Exercise 2.2. Show that {©g,©(t|g),©(¬t|¬g),¬g} is
satisfiable.

The third example illustrates the notion of non-validity
of a formula.

Example 2.3. Show that 6� ¬g →©(t|g).

Solution. We need to build a model such that for some
world in the model, ¬g is satisfied but©(t|g) is not. Let
M = (W,≥, V ) such that W = {s1, s2, s3}, s1 > s2,
V (g) = {s1, s2}, V (t) = {s2}. It can be verified that
M, s3 � ¬g and M, s3 6�©(t|g). a

Exercise 2.3. Show that 6�©g →©(¬t|¬g).

The fourth example illustrates the notion of validity of
a formula.

Example 2.4. Show that �©(t ∨ ¬t|g).

Solution. Let M be an arbitrary model. We need to show
that Best(||g||) ⊆ ||t ∨ ¬t||. Let s ∈ Best(||g||). By
the evaluation rules for the propositional connectives, it
follows at once that M, s � t ∨ ¬t, as required. a

Exercise 2.4. Show that �©(g|g).

Here is a list of valid and invalid formulas:

� �(φ→ ψ)→ (�φ→ �ψ) (K)

� �φ→ ��φ (4)

� ¬�φ→ �¬�φ (5)

�©(ψ → χ/φ)→ (©(ψ/φ)→©(χ/φ)) (COK)

�©(ψ/φ)→ �© (ψ/φ) (Abs)

� �ψ →©(ψ/φ) (CON)

� �(φ↔ ψ)→ (©(χ/φ)↔©(χ/ψ)) (Ext)

�©(φ/φ) (Id)

�©(χ/(φ ∧ ψ))→©((ψ → χ)/φ) (C)

� ♦φ→ (©(ψ/φ)→ P (ψ/φ)) (D∗)

� (P (ψ/φ) ∧ ©((ψ → χ)/φ)) → ©(χ/(φ ∧ ψ))
(S)

6|=©(q/p)→©(q/p ∧ r) (SI)

6|= (©(q/p) ∧©(r/q))→©(r/p) (T)

6|=©(q/p) ∧ p→©q (factual detachment)

Example 2.5. Strengthening of the Antecedent is invalid:

6|=©(q/p)→©(q/p ∧ r)

Intuitively, this means obligations are defeasible (cf. non-
monotonic logic).

We construct the following model: M = (W,≥, V )
such that W = {w1, w2, w3}, w1 > w2 > w3, V (p) =
W , V (q) = {w1, w3}, V (r) = {w2, w3}. It can be veri-
fied that M,w1 6|=©(q/p)→©(q/p ∧ r). a

Exercise 2.5. Show that

6|= (©(¬t/¬g) ∧©(g/¬t))→©(g/¬g)

Exercise 2.6. Show that

• 6|=©(q/p) ∧ p→©q

• |=©(q/p) ∧�p→©q

2.3 Proof system
In the 20th century, mathematical logic was developed in
an attempt to answer a question concerning “truth” and
“proof” in mathematics.

?
Can we give a rigorous definition of “proof” and use
it to “prove” every “true mathematical statement”?

To make sense of this questions, careful concept forma-
tion is needed. What do we mean by:

• “mathematical statement”?

• “true mathematical statement”?

• “proof”?

In the deontic setting, those questions turn to

• What is “deontic statement”?

• What is “true deontic statement”?

• What is “proof”?

• Can we “prove” every “true deontic statement”?

In DSDL, the answers to those questions are the follow-
ing:

• A deontic statements is a formula φ ∈ LD.

• True deontic statements are valid formulas.

• A proof is a derivation to be defined in Definition 6.

• We can prove every true deontic statement. This is
Theorem 1 in the next subsection.
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Definition 6. Let X be a given proof system. X is
characterized by axioms Ax1, Ax2, ..., Axn and rules
Ru1, Ru2, ...Ruk, where each rule Ruj(j ≤ k) is of the
form “From φ1, . . . φjar

infer φj”. We call jar the arity
of the rule. Then, a derivation of φ in X is a finite sequence
φ1, . . . φm of formulas such that:

1. φm = φ;

2. every φi in the sequence is

(a) either an instance of one of the axioms
Ax1, Ax2, ...Axn

(b) or else the result of the application of one of
the rules Ruj(j ≤ k) to jar formulas in the se-
quence that appear before φi.

If there is a derivation for φ in X we write `X φ, and we
say that φ is a theorem in X.

For a set of formulas Γ, we say φ is derivable from Γ
in system X (notation: Γ `X φ) if there are formulas
ψ1, . . . , ψn ∈ Γ such that `X (ψ1 ∧ . . . ∧ ψn)→ φ.

When it is clear what system is intended, we drop the
subscript X, and just write ` φ or Γ ` φ.

Definition 7. Åqvist [2]’s system G consists of the follow-
ing axioms and rules (labels are from [10]):

Axioms schemes:

All tautologies of propositional logic (PL)
�(φ→ ψ)→ (�φ→ �ψ) (K)
�φ→ ��φ (4)
¬�φ→ �¬�φ (5)
© (ψ → χ/φ)→ (©(ψ/φ)→©(χ/φ)) (COK)
© (ψ/φ)→ �© (ψ/φ) (Abs)
�ψ →©(ψ/φ) (Nec)
�(φ↔ ψ)→ (©(χ/φ)↔©(χ/ψ)) (Ext)
© (φ/φ) (Id)
© (χ/(φ ∧ ψ))→©((ψ → χ)/φ) (Sh)
♦φ→ (©(ψ/φ)→ P (ψ/φ)) (D?)
(P (ψ/φ) ∧©((ψ → χ)/φ))→©(χ/(φ ∧ ψ)) (Sp)

Rules:

If ` φ and ` φ→ ψ then ` ψ (MP)
If ` φ then ` �φ (N)

From now onwards for the sake of conciseness brackets
are omited when no confusion can arise.

Remark 2.1. The axioms and the rule governing 2 are
those of the modal system known as S5.

Remark 2.2. (Sp) is the distinctive axiom of G. It ap-
pears in Spohn’s own axiomatization of Hansson’s system
DSDL3 (see [13]). (Sp) is equivalent to the so-called prin-
ciple of rational monotony used in non-monotonic logic
[6]:

P (ψ/φ) ∧©(χ/φ)→©(χ/φ ∧ ψ) (RM)

Example 2.6. In system G, we have:

{P (r/p),©(q/p)} ` ©(q/p ∧ r) (1)
{P (r/p),©(q/p)} ` ©(r → q/p) (2)

Below: the required derivations:
For 1:

1. ` q → (r → q) PL
2. ` �(q → (r → q)) N, 1
3. ` �(q → (r → q))→©(q → (r → q)/p) Nec
4. ` ©(q → (r → q)/p) MP, 2,3
5. ` ©(q → (r → q)/p)→

(©(q/p)→©(r → q/p)) COK
6. ` ©(q/p)→©(r → q/p) MP 4,5
7. ` (P (r/p) ∧©(r → q/p))→©(q/p ∧ r) Sp
8. ` ©(r → q/p)→ (P (r/p)→©(q/p ∧ r)) PL, 7
9. ` ©(r/p)→ (P (r/p)→©(q/p ∧ r)) PL, 8, 6

10. ` (P (r/p) ∧©(r/p))→©(q/p ∧ r) PL, 9

For 2:

1. ` P (r/p) ∧©(q/p)→©(q/p ∧ r) RM
2. ` ©(q/p ∧ r)→©(r → q/p) Sh
3. ` P (r/p) ∧©(q/p)→©(r → q/p) PL 1,2

a

Exercise 2.7. Show that

1. ` ©(t/g)→©(g → t)
2. ` P (p ∧ q)→ P (p/q)

Exercise 2.8. Show that, for axiom Sp to be valid,≥must
be transitive. Show that, for D? to be valid, ≥ must be
limited.

2.4 Completeness and decidability
Theorem 1 (Completeness [9]). Γ ` φ iff Γ � φ

Theorem 2 (Decidability [1]). The derivability problem
in G is decidable. That is, the question as to whether or
not Γ ` φ can be answered in finitely many steps.
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