
Constrained I/O logics
Handout

X. Parent & L. van der Torre
University of Luxembourg

November 14, 2015

1 Introduction
Constrained I/O logic (“cIOL”, for short) aims at giving
a finer grained analysis of the notion of obligation than
unconstrained I/O logic does.

The following two problems have led to the use of con-
straints in input/output logics:

• the question of how to deal with violations and obli-
gations resulting from violations, known as contrary-
to-duty (CTD) reasoning. It has been discussed in the
context of the notorious contrary-to-duty paradoxes
such as Chisholm [1]’s and Forrester [2]’s paradox;

• the question of how to accommodate deontic dilem-
mas (unsolvable conflicts between obligations), and
the question of how to reason about conflicting obli-
gations of different strengths.

The use of constraints has been introduced in [6] in rela-
tion to CTDs, and has been extended to the topic of con-
flicts in [7].

2 Norm violation
The following two examples show why contrary-to-duty
scenarios create a problem in I/O logic without con-
straints.

Example 2.1 (Chisholm [1]). Let out = outi, where i ∈
{3, 4}. Assume N = {(>, h), (h, t), (¬h,¬t)}, where h
and t are for helping and telling. Put A = {¬h}. We have
out(N,A) = Cn(t,¬t) = L, where L is the set of all the
formulas.

Example 2.2 (Forrester [2]). Let out = outi, where i ∈
{1, 2, 3, 4}. Assume N = {(>,¬k), (k, k ∧ g)}, where k
and k ∧ g are for killing and killing-gently. Put A = {k}.
We have out(N,A) = L.

The strategy is to adapt a technique that is well known
in the logic of belief change−cut back the set of norms to

just below the threshold of yielding excess. This amounts
to carrying out a contraction on the set N of norms.

The above strategy is implemented using a set C (so-
called constraints) as an extra parameter. It is used to filter
out excessive output. What we get is (as Makinson calls
it) the “net” output (as opposed to the gross output).

Definition 1 (Maxfamily).
• maxfamily(N,A,C) is the set of ⊆-maximal subsets
N ′ of N such that out(N ′, A) is consistent with C.

• outfamily(N,A,C) =
{out(N ′, A) | N ′ ∈ maxfamily(N,A,C)}.

For CTDs, it is assumed that C = A (I/O constraint).
The input represents something that is unalterably true,
viz. that has happened and cannot be changed (cf. Hans-
son [4, §13]’s interpretation of circumstances). The agent
has to ask himself what obligations (output) this input
gives rise to: even if the input should have not come true,
one has to “make the best out of the sad circumstances”.

A set of norms and an input do not have a set of formu-
las as output, but a set of sets of formulas. We can infer
a set of formulas by taking the join (credulous) or meet
(skeptical).

Definition 2 (Constrained, net output). Define

outc(N,A) = out∪/∩(N,A) = ∪/∩ outfamily(N,A,C)

Example 2.3 (Chisholm, cont’d). Let out, N and A
be as in example 2.1. Put C = A. We have
maxfamily(N,A,C) = {{(h, t), (¬h,¬t)}}, and so
outc(N,A) = Cn(¬t).

Let A = {h} = C. Hence maxfamily(N,A,C) =
{{(>, h), (h, t), (¬h,¬t)}}, and so outc(N,A) =
Cn(h, t).

Example 2.4 (Forrester, cont’d). Let out, N and
A be as in example 2.2. Put C = A. We
have maxfamily(N,A,C) = {{(k, k ∧ g)}}, and so
outc(N,A) = Cn(k ∧ g).

Let A = {¬k} = C. Hence maxfamily(N,A,C) =
{{(>,¬k), (k, k ∧ g)}}, and so outc(N,A) = Cn(¬k).

1



Example 2.5 (Multiple levels of violation). Assume
out = outi, where i ∈ {3, 4}. Assume N =
{(>, k), (¬k, a), (¬k ∧ ¬a, s)}, where k, a and s are for
keeping a promise, apologising and being ashamed, re-
spectively. We have:

outc(N,¬k) = Cn(a) (1)
outc(N,¬k ∧ ¬a) = Cn(s) (2)

EXERCISE

Exercise 2.1. There are two main desiderata for a logic
dealing with CTDs:

• the logic should give a consistent representation to
CTDs scenarios

• the logic should give a representation to the sentences
involved in such a way that each formula remains
logically independent of the others.

Explain in what ways cIOL meets the second requirement.

3 Accommodating dilemmas
Example 3.1 illustrates why dilemmas (unsolvable con-
flicts between obligations) create a problem in I/O logic
without constraints.

Example 3.1 (Unary conflict). Let out = outi, where i ∈
{1, 2, 3, 4}. Assume N = {(a, b), (a,¬b)} and A = {a}.
We have out(N,A) = Cn(b,¬b) = L.

To accommodate dilemmas, we use the same strategy
as for CTDs. For simplicity’s sake, we assume that the
final output is obtained by taking the meet (skeptical).

Example 3.2 (Unary conflict, cont’d). Let out, N and
A = {a} be as in Example 3.1. Put C = ∅. The max-
family has two elements, {(a, b)} and {(a,¬b)}. The
outfamily has two elements, Cn(b) and Cn(¬b). So
outc(N,A) = Cn(∅).

Example 3.3 (Binary conflict). Let out = outi, where
i ∈ {1, 2, 3, 4}. Assume N = {(a, b), (a, c)}, A = {a}
and C = {b→ ¬c}. We have outc(N,A) = Cn(b ∨ c).

Goble [3] identifies three main desiderata for a logic
admitting the possibility of normative conflicts. They are
phrased below in the modal logic notation.

Desid. 1 Make conflicts logically consistent

©A,©¬A 6` ⊥

Desid. 2 Avoid deontic explosion

©A,©¬A 6` ©B

Desid. 3 Do not give away too much, that is keep, e.g.,

©(A ∨B),©¬A ` ©B

The I/O approach meets these desiderata. This is illus-
trated below with the example of Desid. 3.

Example 3.4 (Alternative service). Let out be an I/O op-
eration. Assume N = {(>, f ∨ s), (>,¬f)}, where f
and s are for fighting in the army and performing an al-
ternative national service, respectively. Put A = {>} and
C = ∅. We have outc(N,A) = Cn(s,¬f).

Link with default-assumption consequence

There are connections between cIOL and some well-
known systems for nonmonotonic reasoning developed
in AI. In particular so-called Poole systems (introduced
under the name “default-assumption consequence” in the
Bridges handout) may be seen as a special case of con-
strained input/output logic. We recall the basic idea un-
derpinning Poole systems: when an inconsistency is gen-
erated one looks at what follows from all the maximal con-
sistent subsets of the set of K of background assumptions.

Let (K,A,C) be a Poole system. K, A and C are
sets of formulas in the language of classical propositional
logic. K is a set of background assumptions. A is the
input. C is a set of constraints. (The Bridges handout
focuses on the particular case of a Poole system without
constraints, when C = ∅.)

Definition 3 (Extfamily). Given any Poole system
(K,A,C), let extfamily(K,A,C) be the family of its ex-
tensions in the sense of Poole. That is,

• extfamily(N,A,C) is the set of Cn(A ∪K ′), where
K ′ is maximal among the subsets K” of K such that
A ∪K” ∪ C is consistent.

Theorem 1. Given any Poole system (K,A,C),
extfamily(K,A,C) = outfamily(N,A,C), where N =
{(>, x) : x ∈ K}, and outfamily is defined using reusable
basic throughput out+4 .

Proof. This is [6, Obs. 4]. Hint: remember that
out+4 (N,A) = Cn(A ∪m(N)).

EXERCISE

Exercise 3.1. Show that b ∈ out∩(N,>) whenever b∨c ∈
out∩(N,>) and ¬c ∈ out∩(N,>).

2



4 Obligations of different strengths
Basic idea Start with a priority relation ≥ on norms. Lift

it to a priority relation ≥s on sets of norms. Use ≥s

to select a “preferred” element in the maxfamily. Re-
strict the final, net output to this preferred element.

Let ≥⊆ N × N . (a, x) ≥ (b, y) is read: (a, x) is at
least as strong as (b, y). ≥ is required to be reflexive and
transitive. (a, x) and (b, y) are said to be incomparable
under ≥ if (a, x) 6≥ (b, y) and (b, y) 6≥ (a, x).
> is the strict order induced by ≥. (a, x) > (b, y) is

read: (a, x) is strictly stronger than (b, y). > is defined
by putting (a, x) > (b, y) whenever (a, x) ≥ (b, y) and
(b, y) 6≥ (a, x).

Different notions of lifting have been considered in the
literature. The one defined below is named after Brass.

Definition 4 (Brass lifting). N1 ≥s N2 if and only if
∀(a, x) ∈ N2 −N1 ∃(b, y) ∈ N1 −N2 such that (b, y) ≥
(a, x).

The definition of >s in terms of ≥s parallels that of >
in terms of ≥.

The Brass lifting is to be contrasted with the ∀∀ lifting,
obtained by putting N1 ≥s N2 iff ∀(a, x) ∈ N1 ∀(b, y) ∈
N2 (a, x) ≥ (b, y). Adapted from Goble [3], the following
example explains why the Brass lifting is preferred over
the ∀∀ lifting.

Example 4.1 (Mission). Let (>, a) > (>, b) > (>, c),
where a, b and c are three cities my boss sends me to. Put
C = {a → (b → ¬c), a → ¬b} and A = {>}. The
maxfamily has two elements, N1 = {(>, a), (>, c)} and
N2 = {(>, b), (>, c)}. The ∀∀ definition yields that N1

and N2 are not comparable under≥s, while the Brass def-
inition yields that N1 >s N2. The second solution seems
more intuitive.

Definition 5 (Preferred output, outP ). We define the
preffamily(N,A,C) as the set of ≥s-maximal elements
of maxfamily(N,A,C). We put outP (N,A) = ∩/ ∪
out(N,A), where N ∈ preffamily(N,A,C).

Note that in typical examples there is only one element
in the preffamily.

Not-triggered high-ranking obligations raise special is-
sues as illustrated below. Examples 4.2 and 4.3 describe a
case where the least important obligation overrules a more
important one. This, in order to avoid the violation of an
even more important obligation.

Example 4.2 (Cancer, [7]). Assume out = outi, where
i ∈ {3, 4}. Let (b, c) > (a, b) > (a,¬b), where a, b
and c denote a set of data, the fact of having chemo, and
the fact of keeping the WBC count high enough. Put
A = C = {a}. The maxfamily has two elements, N1 =

{(b, c), (a,¬b)} and N2 = {(b, c), (a, b)}. The preffamily
has one element, N2. And so outP (N,A) = Cn(b, c).

Example 4.3 (Cancer, cont’d, [7]). Let the norms and
priorities involved be as in Example 4.2. But put A =
C = {a,¬c}. The maxfamily has two elements, N1 =
{(b, c), (a,¬b)} and N2 = {(a, b)}. The preffamily has
one element, N1. And so outP (N,A) = Cn(¬b). This
tallies with our intuitions: usually physicians postpone
chemo. Note that most approaches from literature output
b instead.

The order puzzle has been introduced by Horty in [5].

Example 4.4 (Order puzzle, [5]). Let (a,¬b) > (>, b) >
(>, a), where a and b are for putting the heating on
and opening the window respectively. The norms (>, a),
(>, b) and (a,¬b) are issued by a priest, a bishop and
a cardinal, respectively. Assume out = outi, where
i ∈ {3, 4}. Put A = {>} and C = ∅. The max-
family has three elements, N1 = {(>, a), (>, b)} and
N2 = {(>, a), (a,¬b)} and N3 = {(>, b), (a,¬b)}. We
have N3 >s N2 >s N1. So the preffamily has one ele-
ment, N3. And so outP (N,A) = Cn(b).

EXERCISES

Exercise 4.1. What are the properties of >?

Exercise 4.2. State in full the definition of >s.

References
[1] R.M. Chisholm. Contrary-to-duty imperatives and de-

ontic logic. Analysis, 24:33–66, 1963.

[2] J. Forrester. Gentle murder, or the adverbial samari-
tan. Journal of Philosophy, 81:193–196, 1984.

[3] L. Goble. Prima facie norms, normative conflicts
and dilemmas. In D. Gabbay, J. Horty, X. Parent,
R. van der Meyden, and L. van der Torre, editors,
Handbook of Deontic Logic and Normative Systems,
page 241352. College Publications, London, 2013.

[4] B. Hansson. An analysis of some deontic logics.
Noûs, 3(4):373–398, 1969.

[5] J. Horty. Reasons as Defaults. O.U.P, U.S.A., 2012.

[6] D. Makinson and L. van der Torre. Constraints for
input/output logics. Journal of Philosophical Logic,
30(2):155–185, 2001.

[7] X. Parent. Moral particularism in the light of deontic
logic. Artif. Intell. Law, 19(2-3):75–98, 2011.

3


