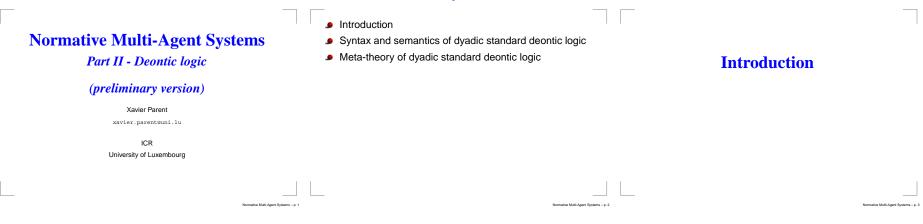
Layout



Deontic logic

General goal

- Design a language for reasoning about norms
 - Greek déon, 'that which is binding, right'

Requirements

- Formal semantics
- Complete axiomatic characterization

Consistency proof: prerequisit for implementation

Guideline

- Start with the simplest possible syntax
- Reserve more complex machinery until the exact limits of the more spartan one are clear

In this tutorial: no time, no bearers of obligations, ... Normative Multi-Agent Systems - p. 4

Dyadic Deontic Logic

 Introduced by Hansson in 1969 under the label DSDL (Dyadic Standard Deontic Logic)

Normative Multi-Agent Systems - p. 5

Motivation: contrary-to-duty (CTD) obligations

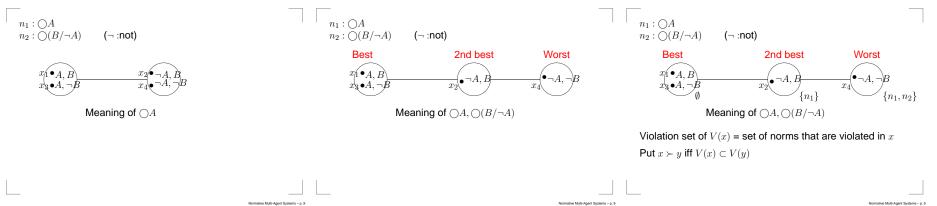
Full account in Åqvist (2002)

Syntax and Semantics

ative Multi-Agent Systems - p. 6

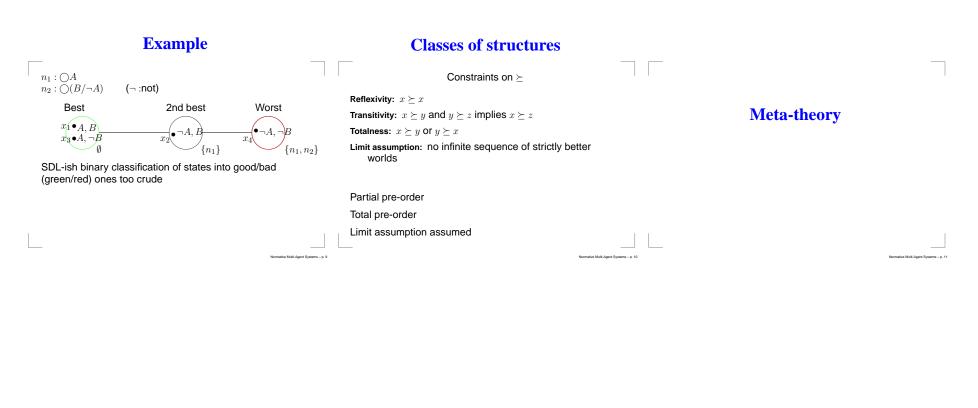
Language	Semantics		Example
Syntax of propositional logic New building blocks $\bigcirc (B/A) = B$ is obligatory, given A $\bigcirc P(B/A) = B$ is permitted, given A A and B are propositional letters Context-dependent approach to norms \blacksquare Truth of a norm usually depends on context \blacksquare Dyadic: two arguments For an unconditional norm, use \top for the condition	 Possible worlds (i.e., valuations) are noted. A binary relation ≽ (read "greater than or used to rank all the possible worlds x, y, . betterness. Truth-conditions ○(B/A) true at x iff all the best (accord A-worlds are B-worlds Similarly for P(B/A) (but with ∀ replace P dual of ○, i.e., P(B/A) = ¬○(¬B/A) 	equal to") is $n_2: \bigcirc (B/\neg A)$ in terms of ding to \succeq)	(\neg :not) $x_1 \bullet A, B$ $x_2 \bullet \neg A, B$ $x_3 \bullet A, \neg B$ $x_4 \bullet \neg A, \neg B$
	Normative Multi-Agent Systems - p. 7	Normative Mutti-Agent Systems – p. 8	Nomatro Mult Ager System - p. 9

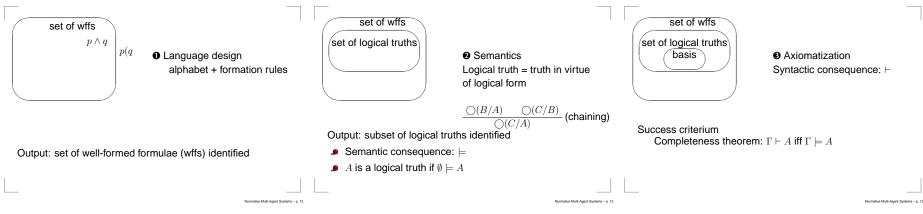
Example

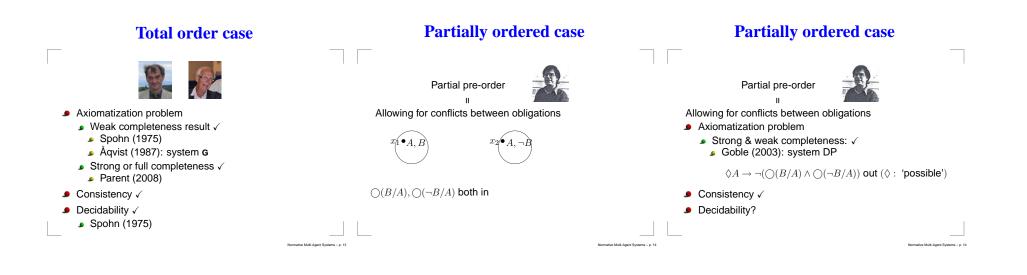


Example

Example







Non-transitive case

Call x and y equally good $(x \simeq y)$ if $x \succeq y$ and $y \succeq x$.

Argument form

If \succeq transitive, then \simeq transitive \simeq not transitive So \succeq not transitive

Non-transitive case

Call x and y equally good $(x \simeq y)$ if $x \succeq y$ and $y \succeq x$.

Argument formIf \succeq transitive, then \simeq transitive \simeq not transitiveSo \succeq not transitive

Normative Multi-Agent Systems - p. 15

Modus Tollens re If P, then Q not-Q Therefore, not-P

Normative Multi-Agent Systems - p. 15

Non-transitive case

Call x and y equally good $(x \simeq y)$ if $x \succeq y$ and $y \succeq x$.

 $\begin{array}{l} \textit{Argument form} \\ \textit{If} \succeq \textit{transitive, then} \simeq \textit{transitive} \\ \simeq \textit{not transitive} \\ \textit{So} \succeq \textit{not transitive} \end{array}$

Modus Tollens If *P*, then *Q* not-*Q* Therefore, not-*P*

native Multi-Agent Systems - p. 15

Sorites argument

1000 cups of coffes: $C_1, C_2, C_3, ..., C_{999}$

$$C_1 \simeq C_2 \simeq C_3 \simeq \dots \simeq C_{999}$$

Non-transitive case

Call x and y equally good $(x \simeq y)$ if $x \succeq y$ and $y \succeq x$.

Argument form

If \succeq transitive, then \simeq transitive \simeq not transitive So \succ not transitive

 Modus Tollens

 tive
 If P, then Q

 not-Q

 Therefore, not-P

Sorites argument

1000 cups of coffes: $C_0, C_2, C_3, ..., C_{999}$

 $C_0 \simeq C_2 \simeq C_3 \simeq \ldots \simeq C_{999}$ but $C_0 \not\simeq C_{999}$

Non-transitive case

Preliminary result: Parent, to appear: Strong completeness result using an alternative language

- Operator: QA "ideally A"

Open problems:

- Axiomatize the logic using conditional obligation
- Show decidability
 - On-going work with J. Carmo

Bibliography (1)

- L. Åqvist, Introduction to Deontic Logic and the Theory of Normative Systems, Napoli, Bibliopolis, 1987.
- L. Åqvist, "Deontic Logic". In D. Gabbay and F. Guenthner (Eds.), *Handbook of Philosophical Logic*, 2nd Edition, Vol. 8, pp. 147-264, Kluwer Academic, 2002.
- L. Goble, "Preference semantics for deontic logics. Part I -Simple models", *Logique & Analyse*, 46, 2003, pp. 383-418.
- B. Hansson, "An Analysis of some deontic logics", Nous 3, 1969, pp. 373-398.

Bibliography (2)

- X. Parent, "On the strong completeness of Åqvist's dyadic deontic logic G". In van der Meyden and van der Torre (eds), Deontic Logic in Computer Science 9th International Conference, DEON 2008, Luxembourg, Luxembourg, July 15-18, 2008. Proceedings, pp. 189-202.
- X. Parent, "A complete axiom set for Hansson's system DSDL2". To appear.
- W. Spohn, "An analysis of Hansson's dyadic deontic logic", Journal of Philosophical Logic, 4, 1975, pp. 237-252.

mative Multi-Agent Systems – p. 18