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Introduction

Normative Multi-Agent Systems – p. 3

Deontic logic

General goal

Design a language for reasoning about norms
Greek déon, ‘that which is binding, right’

Requirements

Formal semantics

Complete axiomatic characterization
Consistency proof: prerequisit for implementation

Guideline

Start with the simplest possible syntax

Reserve more complex machinery until the exact limits
of the more spartan one are clear

In this tutorial: no time, no bearers of obligations, ...Normative Multi-Agent Systems – p. 4

Dyadic Deontic Logic

Introduced by Hansson in 1969 under the label DSDL
(Dyadic Standard Deontic Logic)

Motivation: contrary-to-duty (CTD) obligations

Full account in Åqvist (2002)
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Syntax and Semantics
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Language

Syntax of propositional logic

New building blocks

©(B/A) = B is obligatory, given A

P (B/A) = B is permitted, given A

A and B are propositional letters

Context-dependent approach to norms

Truth of a norm usually depends on context

Dyadic: two arguments

For an unconditional norm, use ⊤ for the condition
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Semantics

Possible worlds (i.e., valuations) are noted x, y, etc.

A binary relation � (read “greater than or equal to") is
used to rank all the possible worlds x, y, .... in terms of
betterness.

Truth-conditions
©(B/A) true at x iff all the best (according to �)
A-worlds are B-worlds
Similarly for P (B/A) (but with ∀ replaced by ∃).

P dual of©, i.e., P (B/A) = ¬© (¬B/A)
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Example

n1 :©A
n2 :©(B/¬A) (¬ :not)

x1• A, B

x2•¬A, B

x3•A,¬B

x4•¬A,¬B
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Example

n1 :©A
n2 :©(B/¬A) (¬ :not)

&%
'$

x1•A, B
x3•A,¬B &%

'$
x2•¬A, B
x4•¬A,¬B

Meaning of©A
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Example

n1 :©A
n2 :©(B/¬A) (¬ :not)

&%
'$

x1•A, B
x3•A,¬B &%

'$
x2

•¬A, B &%
'$

x4

•¬A,¬B

Best 2nd best Worst

Meaning of©A,©(B/¬A)
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Example

n1 :©A
n2 :©(B/¬A) (¬ :not)

∅ {n1} {n1, n2}

Best

&%
'$

x1•A, B
x3•A,¬B

2nd best

&%
'$

x2
•¬A, B

Worst

&%
'$

x4

•¬A,¬B

Meaning of©A,©(B/¬A)

Violation set of V (x) = set of norms that are violated in x

Put x ≻ y iff V (x) ⊂ V (y)
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Example

n1 :©A
n2 :©(B/¬A) (¬ :not)

∅ {n1} {n1, n2}

Best

x1•A, B
x3•A,¬B

2nd best

&%
'$

x2
•¬A, B

Worst

&%
'$

x4

•¬A,¬B&%
'$

&%
'$

SDL-ish binary classification of states into good/bad
(green/red) ones too crude
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Classes of structures

Constraints on �

Reflexivity: x � x

Transitivity: x � y and y � z implies x � z

Totalness: x � y or y � x

Limit assumption: no infinite sequence of strictly better
worlds

Partial pre-order

Total pre-order

Limit assumption assumed
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Meta-theory
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set of wffs
p ∧ q

p(q
➊ Language design

alphabet + formation rules

Output: set of well-formed formulae (wffs) identified
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set of wffs'
&

$
%

set of logical truths
➋ Semantics
Logical truth = truth in virtue
of logical form

©(B/A) ©(C/B)
(chaining)

©(C/A)
Output: subset of logical truths identified

Semantic consequence: |=

A is a logical truth if ∅ |= A
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set of wffs'
&

$
%

set of logical truths�
�

�
�basis ➌ Axiomatization

Syntactic consequence: ⊢

Success criterium
Completeness theorem: Γ ⊢ A iff Γ |= A
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Total order case

Axiomatization problem
Weak completeness result X
Spohn (1975)
Åqvist (1987): system G

Strong or full completeness X

Parent (2008)

Consistency X

Decidability X

Spohn (1975)
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Partially ordered case

Partial pre-order

=

Allowing for conflicts between obligations

&%
'$

x1•A, B

&%
'$

x2•A,¬B

©(B/A),©(¬B/A) both in

Normative Multi-Agent Systems – p. 14

Partially ordered case

Partial pre-order

=

Allowing for conflicts between obligations
Axiomatization problem
Strong & weak completeness: X

Goble (2003): system DP

♦A → ¬(©(B/A) ∧©(¬B/A)) out (♦ : ‘possible’)

Consistency X

Decidability?
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Non-transitive case

Call x and y equally good (x ≃ y) if x � y and y � x.

Argument form

If � transitive, then ≃ transitive
≃ not transitive
So � not transitive
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Non-transitive case

Call x and y equally good (x ≃ y) if x � y and y � x.

Argument form Modus Tollens
If � transitive, then ≃ transitive If P , then Q

≃ not transitive not-Q
So � not transitive Therefore, not-P
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Non-transitive case

Call x and y equally good (x ≃ y) if x � y and y � x.

Argument form Modus Tollens
If � transitive, then ≃ transitive If P , then Q

≃ not transitive not-Q
So � not transitive Therefore, not-P

Sorites argument

1000 cups of coffes: C1, C2, C3, ..., C999

C1 ≃ C2 ≃ C3 ≃ .... ≃ C999
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Non-transitive case

Call x and y equally good (x ≃ y) if x � y and y � x.

Argument form Modus Tollens
If � transitive, then ≃ transitive If P , then Q

≃ not transitive not-Q
So � not transitive Therefore, not-P

Sorites argument

1000 cups of coffes: C0, C2, C3, ..., C999

C0 ≃ C2 ≃ C3 ≃ .... ≃ C999 but C0 6≃ C999
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Non-transitive case

Preliminary result: Parent, to appear: Strong completeness
result using an alternative language

Operator: QA “ideally A"

©(B/A) = �(QA → B)

Open problems:

Axiomatize the logic using conditional obligation

Show decidability
On-going work with J. Carmo
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