
I/O logics with a consistency check

Xavier Parent
University of Luxembourg
xavier.parent@uni.lu

Leendert van der Torre
University of Luxembourg

leon.vandertorre@uni.lu

Abstract

Norm-based semantics to deontic logic typically come in an unconstrained
and constrained version, where the unconstrained version comes with a proof
system, and the constraints handle phenomena such as dilemmas, contrary-to-
duty reasoning, uncertainty and defeasibility. This is analogous to the use of
rule-based languages in non-monotonic logic such as logic programming or de-
fault logic, but in contrast to the traditional modal framework. Traditionally,
for example, specific modal deontic logics have been defined that make dilem-
mas inconsistent, as well as other modal deontic logics representing dilemmas in
a consistent way. This issue was raised recently in the input/output logic frame-
work, and weaker unconstrained logics have been defined handling phenomena
like dilemmas and contrary-to-duty reasoning. In this paper we introduce a
semantics and proof theory for a system with various desirable properties. We
show that our new deontic logic satisfies a criterion posed several years ago
by Broersen and van der Torre, allowing deontic detachment while preventing
Prakken and Sergot’s pragmatic oddities as well as Sergot’s drowning problem.

Keywords: Deontic logic, normative systems, I/O logic, reusable output, con-
sistency check

Thanks to three anonymous reviewers for valuable comments. This work is supported by the
European Union’s Horizon 2020 research and innovation programme under the Marie Curie grant
agreement No: 690974 (Mining and Reasoning with Legal Texts, MIREL).

Vol. \jvolume No. \jnumber \jyear
Journal of Applied Logics — IFCoLog Journal of Logics and their Applications

Parent and van der Torre

1 Introduction
This paper deals with I/O logic, initially devised by Makinson and van der Torre [7].
It falls within the category of what Hansen [6] calls a “norm-based” deontic logic.
The central question of a norm-based deontic logic is : what obligations can be
detached from a set N of (explicitly given) rules or conditional norms in a given
context? The approach is in this regard very different from the more traditional
one, aiming at identifying a set of “logical laws” using a possible worlds semantics.

1.1 Aim of paper

We first explain the main purpose of this paper, and its contribution to the literature
on I/O logic. An overview of the I/O systems that have been studied so far in the
literature is shown in Table 1 along with the system studied in this paper. A pair
(a, x) denotes a conditional obligation. (a, x) is read: “if a, then x is obligatory”.
The columns show the rules characterising a system. The symbol “+” indicates the
presence of a rule, and the symbol “-” its abscence. The right-most column gives the
paper(s) where the system has been studied. Each system comes with a semantics,
and a completeness theorem linking the semantics with the proof theory. The last
system mentioned in the table is the strongest one. It collapses with the system of
classical propositional logic: (a, x) is derivable from N if and only if m(N) ` a→ x,
where ` is the deducibility relation used in classical propositional logic and m(N)
is the set of materializations of N , viz {b→ y : (b, y) ∈ N}. We list the rules in the
order in which they appear in the table, starting from the left-most column.

• EQ (equivalence of the output): from (a, x), x ` y and y ` x, infer (a, y)
• SI (strengthening of the input): from (a, x) and b ` a, infer (b, x) 1

• WO (weakening of the output): from (a, x) and x ` y, infer (a, y)
• R-AND (restricted AND): from (a, x), (a, y) and a ∧ x ∧ y consistent, infer

(a, x ∧ y)
• R-AND’: from (a, x), (a, y), a∧x consistent and a∧y consistent, infer (a, x∧y)
• AND: from (a, x) and (a, y), infer (a, x ∧ y)
• OR: from (a, x) and (b, x), infer (a ∨ b, x)
• R-ACT (restricted ACT’): from (a, x), (a∧x, y) and a∧x∧ y consistent, infer

(a, x ∧ y)
• ACT (aggregative CT): from (a, x), (a ∧ x, y), infer (a, x ∧ y)
• MCT (mediated CT): from (a, x′), (a ∧ x, y), x′ ` x, infer (a, y)
• CT (cumulative transitivity): from (a, x) and (a ∧ x, y), infer (a, x ∧ y)
1Given SI, the analog of EQ holds for the input.

2

Consistent reusability

• ID (identity): (a, a)
In this paper, we want to investigate the effects of adding R-ACT to {SI,EQ}.
(Given SI, R-ACT entails R-AND.) Our aim is to define an I/O operation validating
the triplet of rules {SI, R-ACT, EQ}, and to establish a completeness theorem
showing the equivalence between the semantics and the proof theory. The I/O
operation is called reusable, because the output can be recycled as input (under
suitable conditions). The system characterised by {SI, R-ACT, EQ} is weaker than
the one characterised by {SI, ACT, EQ}, but stronger than the one characterised by
{SI, R-AND, EQ}. In the presence of SI, R-ACT implies R-AND, but not conversely.

EQ SI WO R-AND R-AND’ AND OR R-ACT ACT MCT CT ID References
+ + - + - - - - - - - - [14]
+ + - + - - - + - - - - this paper
+ + - + + - - - - - - - [14]
+ + - + + + - - - - - - [18, 17, 12]
+ + - + + + - + + - - - [12]
+ + - + + + - + + + + - [18, 17]
+ + - + + + + - - - - - [12]
+ + + + + + - - - - - - [7]
+ + + + + + - - - - - + [7]
+ + + + + + - + + + + - [7, 11]
+ + + + + + - + + + + + [7]
+ + + + + + + - - - - - [7, 11, 19]
+ + + + + + + - - - - + [7]
+ + + + + + + + + + + - [7]
+ + + + + + + + + + + + [7]

Table 1: Overview of I/O systems

1.2 Broersen and van der Torre’s open problem

In order to motivate this work, we explain how the pair of rules {SI, R-ACT}
handles a problem pointed out by Broersen and van der Torre in their survey of
open problems in deontic logic [2]. For each problem, they discuss traditional and
new research questions. The one we will focus on is related to the topic of contrary-
to-duty reasoning. After having introduced the traditional problems surrounding
this topic, and identified a few new questions, they make the following observation:

3

Parent and van der Torre

“The pragmatic oddity is the derivation of the conjunction ‘you should
keep your promise and apologize for not keeping it’ from ‘you should keep
your promise’, ‘if you do not keep your promise you should apologize’
and ‘you do not keep your promise’ [15]. Note that the sentences of
this problem have the same structure as those of the Chisholm scenario.
The drowning problem [also called by Parent and van der Torre [13] the
violation detection problem]2 is that many solutions of the pragmatic
oddity cancel the obligation in case of violation, such that for violations
¬p ∧©p, the violated obligation ©p is no longer derivable.” [2, p. 64]

They go on to ask the following question:

“New question 11: how to prevent the pragmatic oddity without creating
the drowning problem?”

Example 1 shows how the proposed system handles this problem. To keep things
simple, we make our point using R-AND, which is derivable from the pair of rules
{SI,R-ACT}.

Example 1 (Broken promise). Let k and a stand for keeping one’s promise and
for apologizing, respectively. Consider the following derivation, in which a blocked
derivation step is represented by a dashed line.

(>, k)
SI (¬k, k) (¬k, a)

R-AND(¬k, k ∧ a)

On the one hand, the drowning problem (or the violation detection problem) does
not occur, because SI allows us to move from (>, k) to (¬k, k). Constrained I/O
logic [8] blocks such a move: k is not consistent with ¬k. On the other hand, the
pragmatic oddity is avoided, because R-AND cannot be applied to get (¬k, k ∧ a):
k ∧ ¬k ∧ a is not consistent.

2The name “drowning problem” was suggested orally by M. Sergot to the first author of the
present paper, in relation with the non-monotonic approaches to contrary-to-duty reasoning.

4

Consistent reusability

Three remarks are in order:
• The rule R-AND’ (“from (a, x), (a, y), a ∧ x consistent and a ∧ y consistent,

infer (a, x ∧ y)”) characterizing the second of the two I/O systems discussed
in Parent and van der Torre [14] also blocks the pragmatic oddity.

• This treatment of the pragmatic oddity is very much in the spirit of Prakken
and Sergot [16]’s own treatment. They (rightly, in our view) stress that pri-
mary and CTD obligations are of a different kind. Our proposal is not to allow
them to aggregate using the AND rule, because of this difference in nature.
This point was already made by Parent and van der Torre [14].

• R-AND is enough to tackle Broersen and van der Torre’s problem. But there
is an independent reason for using the stronger rule R-ACT. It is that a system
with SI and R-AND only does not allow to chain norms together, and does
not support any form of transitivity. This motivates the attempt made in this
paper to extend the account described by Parent and van der Torre [14] so it
can handle iterations of successive detachments. Since (given SI) ACT implies
AND, the combination {ACT, R-AND} must be ruled out. Prima facie, there
are other combinations that might be worthwhile studying, like {CT, R-AND}.
However, it is still unknown what the corresponding I/O operations would be
like. This is why they are not considered in this paper.

The present paper is technical. Our main interest is in formal systems. The
proof of completeness we give is not a straightforward adaptation of proofs given
elsewhere. As always the devil is in the details. There are two challenging com-
plicating factors that make the proof non-trivial, and worth reporting. First, when
calculating the output, one looks at what is “triggered” not by Cn(A), the set of
consequences of input set A, but by some B ⊆ Cn(A). This is needed to resolve the
violation detection (or drowning) problem: SI is supported. Second, the proposed
I/O operations have a built-in “consistency check”. They are thus close in spirit
to the constrained I/O operations developed by Makinson and van der Torre [8].
The objective is the same: to filter excess output using consistency checks. There
are similarities between the two frameworks, but also important differences. First,
all the constrained I/O operations face the violation detection problem. Second,
in contrast to the constrained I/O operations, the I/O operations studied in this
paper have a proof theory. Their built-in consistency check (used to filter excess
output) translates into a consistency proviso restraining the application of a rule.
This explains the running title of this paper, “Consistent reusability”.

This paper follows a straightforward structure. Section 2 gives the required
background. Section 3 presents the system, and shows soundness and completeness.

5

Parent and van der Torre

2 Background
In this section we recall some basic definitions and a result from Parent and van der
Torre [14], which will be used in the paper.

A normative code is a set N of pairs (a, x), where a and x are two formulae
of classical propositional logic. Each pair represents a conditional obligation. a is
called the body, and x is called the head. Given M ⊆ N , h(M) denotes the set of
all the heads of the pairs in M , and b(M) denotes the set of all the bodies of the
pairs in M . We use the standard notation (>, x) for the unconditional obligation of
x, where > stands for a tautology like a∨¬a. L is the set of all formulae of classical
propositional logic. Given an input A ⊆ L, and a normative system N , N(A)
denotes the image of N under A, i.e., N(A) = {x : (a, x) ∈ N for some a ∈ A}.
Cn(A) denotes the set {x : A ` x}, where ` is the deducibility relation used in
classical propositional logic. The notation x a` y is short for x ` y and y ` x. We
use PL as an abbreviation for (classical) propositional logic.

In input/output logic, the main semantical construct has the form: x ∈ O(N, A).
This is read as follows: given input A (state of affairs), x (obligation) is in the output
under norms N . The proof-theory is given in terms of inference rules manipulating
pairs of Boolean formulas instead of formulas.

Definition 1 reformulates one of the two new I/O operations put forth by Parent
and van der Torre [14]–both formulations are equivalent. The I/O operation is
written O1. The definition says the following. Given input A, x is outputted if the
following condition holds: x is logically equivalent to the conjunction of all the heads
of all the pairs in a non-empty and finite M ⊆ N , whose bodies are all in Cn(A),
and which are “collectively” consistent with x. Formally:

Definition 1 (Semantics, single-step detachment). x ∈ O1(N, A) iff there is some
finite M ⊆ N and a set B ⊆ Cn(A) such that M 6= ∅, B = b(M), x a` ∧h(M) and
{x} ∪B is consistent.

As usual, O1(N) = {(A, x) : x ∈ O1(N, A)}.
In Parent and van der Torre [14], the account has been applied to a number of

benchmark examples from literature. The proposed account has been devised to
handle simultaneously the two main categories of benchmark problems discussed in
deontic logic, the group of those pertaining to contrary-to-duty reasoning [16, 3, 5],
and the group of those dealing with (unresolved) conflicts between obligations [4].
These two categories of problems are usually considered separately one from the
other. We believe it is a virtue of the present framework that it covers them both.

We turn to the proof-theory. A derivation of a pair (a, x) from N , given a set
R of rules, is understood to be a tree with (a, x) at the root, each non-leaf node

6

Consistent reusability

related to its immediate parents by the inverse of a rule in R, and each leaf node an
element of N .

Definition 2 (Proof system). (a, x) ∈ D1(N) if and only if (a, x) is derivable from
N using the rules {SI, EQ, R-AND}

(a, x) b ` a
SI (b, x)

(a, x) x a` y
EQ

(a, y)

(a, x) (a, y)
R-AND a ∧ x ∧ y is consistent

(a, x ∧ y)

Furthermore it is required that all the leaves of the derivation of (a, x) have (in the
terminology of Makinson and van der Torre [8]) a consistent “fulfilment”. That is,
for all the leaves (b, y), b ∧ y must be consistent.

When A is a set of formulas, (A, x) ∈ D1(N) means that (a, x) ∈ D1(N), for some
conjunction a of elements of A. Furthermore, D1(N, A) = {x : (A, x) ∈ D1(N)}.

The requirement that the leaves of a derivation have a consistent fulfilment
implies that D1 fails inclusion, that is N ⊆ D1(N, A) does not necessarily hold. Put
N = {(x,¬x)} ; we have (x,¬x) 6∈ D1(N). This is in line with the semantics, which
yields (x,¬x) 6∈ O1(N).

The following applies.

Theorem 1 (Soundness and completeness). D1(N, A) = O1(N, A).

Proof. The proof is a re-run of the one given in Parent and van der Torre [14],
suitably adapted to take into account the changes made to the definition of the I/O
operation.

3 Recycling the output as input
The system described in the previous section has an important limitation: it does not
allow the output to be recycled as input. In other words, it cannot handle iteration
of successive detachments. In this section, we show how to remove this limitation.
We describe a semantics and a proof system, and we establish the soundness and
completeness of the second with respect to the first.

7

Parent and van der Torre

We start with the semantics. The I/O operation is written O3. We use the
same subscript as Makinson and van der Torre [7]–our O3 echoes their reusable I/O
operation out3.

Definition 3 (Semantics, iterated detachments). x ∈ O3(N, A) iff there is a finite
M ⊆ N and a set B ⊆ Cn(A) such that M(B) 6= ∅, x a` ∧h(M), and

i) ∀B′(B ⊆ B′ = Cn(B′) ⊇M(B′)⇒ b(M) ⊆ B′)
ii) {x} ∪B is consistent

Observation 1. Let M , B and B′ be such that B ⊆ B′ ⊇M(B′)∪ b(M). We have
h(M) = M(B′).

Proof. The inclusion M(B′) ⊆ h(M) holds by definition. For the converse inclusion,
let y ∈ h(M). We have (a, y) ∈ M for some a ∈ b(M). Since b(M) ⊆ B′, a ∈ B′,
and thus y ∈M(B′) as required.

As before, O3(N) = {(A, x) : x ∈ O3(N, A)}.

Observation 2. If x ∈ O3(N, A) and A ∪ {x} is consistent, then there is a finite
M ⊆ N such that M(Cn(A)) 6= ∅, x a` ∧h(M) and

∀B′(Cn(A) ⊆ B′ = Cn(B′) ⊇M(B′)⇒ b(M) ⊆ B′) (1)

Proof. Let x ∈ O3(N, A) and A∪{x} be consistent. By definition 3, there is a finite
M ⊆ N and a set B ⊆ Cn(A) such that M(B) 6= ∅, x a` ∧h(M), and

i) ∀B′(B ⊆ B′ = Cn(B′) ⊇M(B′)⇒ b(M) ⊆ B′)
We have M(Cn(A)) 6= ∅, since M(B) 6= ∅. (1) follows from i) and B ⊆ Cn(A).

We now present the proof theory.

Definition 4 (Proof system). (a, x) ∈ D3(N) if and only if (a, x) is derivable from
N using the rules {SI, EQ, R-ACT}:

(a, x) (a ∧ x, y) a ∧ x ∧ y is consistent
R-ACT (a, x ∧ y)

As before it is required that all the leaves of the derivation of (a, x) have a consistent
“fulfilment”. That is, for all the leaves (b, y), b ∧ y must be consistent.

8

Consistent reusability

As before, when A is a set of formulas, (A, x) ∈ D3(N) means that (a, x) ∈ D3(N)
for some conjunction a of elements of A. Furthermore, D3(N, A) = {x : (A, x) ∈
D3(N)}.

The requirement that the leaves of a derivation have a consistent fulfilment
implies that D3 fails inclusion, that is N ⊆ D3(N) does not necessarily hold. Put
N = {(x,¬x)} ; we have (x,¬x) 6∈ D3(N). This is in line with the semantics, which
yields (x,¬x) 6∈ O3(N).

Observation 3. O3 (for an input formula a) verifies the rules of D3.

Proof. SI and EQ are straightforward. We show R-ACT. Assume

x ∈ O3(N, a) (HYP 1)
y ∈ O3(N, a ∧ x) (HYP 2)
a ∧ x ∧ y consistent (HYP 3)

From HYP 3, a ∧ x is consistent. By observation 2, HYP 1 implies:

∃M1 ⊆ N such that M1(Cn(a)) 6= ∅ and x a` ∧h(M1) and
∀B′(Cn(a) ⊆ B′ = Cn(B′) ⊇M1(B′)⇒ b(M1) ⊆ B′) (2)

Similarly, by observation 2, HYP 2 and HYP 3 imply:

∃M2 ⊆ N such that M2(Cn(a, x)) 6= ∅ and y a` ∧h(M2) and
∀B′(Cn(a, x) ⊆ B′ = Cn(B′) ⊇M2(B′)⇒ b(M2) ⊆ B′) (3)

Put M3 = M1 ∪M2. We have M3(Cn(a)) 6= ∅. Also, x ∧ y a` ∧h(M3).
Let B′ be such that Cn(a) ⊆ B′ = Cn(B′) ⊇ M3(B′). We have B′ ⊇ M1(B′).

By (2), b(M1) ⊆ B′. By observation 1, x a` ∧M1(B′). But B′ = Cn(B′) ⊇M1(B′).
So x ∈ B′. Also a ∈ B′. Hence a ∧ x ∈ B′. So Cn(a, x) ⊆ B′. On the other hand,
B′ ⊇ M2(B′). By (3), b(M2) ⊆ B′, so that b(M3) ⊆ B′. Last, {x ∧ y} ∪ Cn(a) is
consistent, by HYP 3. Hence, x ∧ y ∈ O3(N, a) as required.

Theorem 2 (Soundness). D3(N, A) ⊆ O3(N, A).

Proof. The proof follows the usual format in I/O logic, using theorem 3. The require-
ment that all the leaves of the derivation of (a, x) must have consistent fulfilment is
needed to handle the case where (a, x) is in N . Details are omitted.

The remainder of the paper is devoted to the proof of completeness.

Lemma 1. If x ∈ D3(M, A), then h(M) ` x.

9

Parent and van der Torre

Proof. By induction on the length of the derivation of (A, x). Details are omitted.

Theorem 3 (Completeness). O3(N, A) ⊆ D3(N, A).

Proof. Assume x ∈ O3(N, A), viz. (A, x) ∈ O3(N). There is a finite M ⊆ N and a
set B ⊆ Cn(A) such that M(B) 6= ∅, x a` ∧h(M) and

i) ∀B′(B ⊆ B′ = Cn(B′) ⊇M(B′)⇒ b(M) ⊆ B′)
ii) B ∪ {x} is consistent

Define B† = Cn(B ∪D3(M, B)).

Lemma 2. M(B†) ⊆ B†.

Proof of lemma 2. Let y ∈ M(B†). Hence (c, y) ∈ M and c ∈ B†. So B ∪
D3(M, B) ` c. Thus b, y1, ..., yn ` c, where b is a conjunction of elements in B,
and y1, ..., yn ∈ D3(M, B). For all i ≤ n, yi ∈ D3(M, bi), where bi is a conjunction of
elements in B. For the sake of conciseness, we define [as a shorthand of b∧(∧n

i=1bi).
By PL, ∧n

i=1yi ` [→ c, and thus ∧n
i=1yi a` ∧n

i=1yi ∧ ([→ c).
Now, for two sub-lemmas.

Lemma 2.1. [∧ (∧n
i=1yi) ∧ ([→ c) ∧ y is consistent.

Proof of lemma 2.1. Proof by contradiction:

[∧ (∧n
i=1yi) ∧ ([→ c) ∧ y ` ⊥ assumption

[∧ (∧n
i=1yi) ∧ y ` ⊥ since ∧n

i=1 yi ` [→ c

B ∪ {y1, ..., yn, y} ` ⊥ since B ` [

B ∪ h(M) ∪ {y} ` ⊥ by lemma 1
B ∪ h(M) ` ⊥ since y ∈ h(M)
B ∪ {x} ` ⊥ since h(M) a` x

= contradiction

Lemma 2.2. c ∧ y is consistent.

Proof of lemma 2.2. Proof by contradiction:

10

Consistent reusability

c ∧ y ` ⊥ assumption
[∧ ([→ c) ∧ y ` ⊥ since [∧ ([→ c) ` c

= contradiction

The argument for lemma 2 continues thus. Now, we have

(b1, y1)
SI([, y1)

(bn, yn)
SI([, yn)
R-AND, lemma 2.1

([,∧n
i=1yi)EQ

([,∧n
i=1yi ∧ ([→ c))

Each (bi, yi) is the root of a derivation from leaves which (by definition) satisfy the
requirement that they have a consistent fulfilment. Furthermore, the pair (c, y) has
a consistent fulfilment, lemma 2.2. Thus,

([,∧n
i=1yi ∧ ([→ c))

(c, y)
SI([∧ (∧n

i=1yi) ∧ ([→ c), y)
R-ACT, lemma 2.1

([,∧n
i=1yi ∧ ([→ c) ∧ y)

[is a conjunction of formulas in B. This implies that

∧n
i=1yi ∧ ([→ c) ∧ y ∈ D3(M, B)

and so y ∈ B† as required.
This completes the proof of lemma 2.

Lemma 3. b(M) ⊆ B†.

Proof of lemma 3. This follows from the fact that B† meets all the conditions men-
tioned in the antecedent of the implication i).

Lemma 4. B ∪D3(M, B), and hence also B†, is consistent.

Proof of lemma 4. We establish the claim for B ∪ D3(M, B) by contradiction. In
the following derivation, b1, ... bn are elements of D3(M, B).

B ∪ {b1, ..., bn} ` ⊥ assumption
B ∪ h(M) ` ⊥ by lemma 1
B ∪ {x} ` ⊥ since h(M) a` x

= contradiction

11

Parent and van der Torre

The claim for B† follows from that for B ∪D3(M, B).

Lemma 5. h(M) ⊆ B†.

Proof of lemma 5. This follows from observation 1, h(M) = M(B†), combined with
the above.

Lemma 6. b(M) ∪ h(M) is consistent.

Proof of lemma 6. By lemmas 3 and 5, b(M) ∪ h(M) ⊆ B†. By lemma 4, B† is
consistent. It immediately follows that b(M) ∪ h(M) is consistent.

Lemma 7. b(M) ∪ {x} is consistent.

Proof of lemma 7. Immediate from lemma 6 and x a` ∧h(M).

With lemmas 3 and 7 in hand, one then gets:

x ∈ O1(N, B ∪D3(M, B)) by definition 1
x ∈ D1(N, B ∪D3(M, B)) by theorem 1
x ∈ D3(N, B ∪D3(M, B))

This means that x ∈ D3(N, {b}∪{a1, ..., an}), where b is a conjunction of elements of
B and, for each ai, ai ∈ D3(M, B). For each ai, there is a conjunction bi of elements
in B such that ai ∈ D3(M, bi).

At this point, one last lemma is needed:

Lemma 8. ∧n
i=1bi ∧ (∧n

i=1ai) ∧ b ∧ x is consistent.

Proof of lemma 8. Proof by contradiction:

{a1, ..., an, b1, ..., bn, b, x} ` ⊥ assumption
h(M) ∪ {b1, ..., bn, b, x} ` ⊥ by lemma 1
h(M) ∪B ∪ {x} ` ⊥ since b1, ..., bn, b ∈ Cn(B)
B ∪ {x} ` ⊥ since h(M) a` x

= contradiction

The following is thus derivable from M :

12

Consistent reusability

(b1, a1)
SI(∧n

i=1bi, a1)
(bn, an)

SI(∧n
i=1bi, an)

R-AND, lemma 8
(∧n

i=1bi,∧n
i=1ai) SI(∧n

i=1bi ∧ b,∧n
i=1ai)

The following is also derivable from N :

(b ∧ (∧n
i=1ai), x)

SI(∧n
i=1bi ∧ b ∧ (∧n

i=1ai), x)
By Lemma 1, for each ai, h(M) ` ai, and thus h(M) ` ∧n

i=1ai. Hence, x ` ∧n
i=1ai,

and so x a` x∧ (∧n
i=1ai). Furthermore, a? ` ∧n

i=1bi ∧ b, where a? is a conjunction of
elements of A. The following may, then, be derived.

(∧n
i=1bi ∧ b,∧n

i=1ai) (∧n
i=1bi ∧ b ∧ (∧n

i=1ai), x)
R-ACT, lemma 8

(∧n
i=1bi ∧ b,∧n

i=1ai ∧ x)
EQ

(∧n
i=1bi ∧ b, x)

SI (a?, x)
Since a? is a conjunction of elements of A, the pair (A, x) is derivable.

This completes the proof of the main result of this paper, theorem 3.

4 Topics for future research
We end this paper with a number of topics for future research.

• Other restricted forms of chaining can be considered, like

(a, x) (x, y) a ∧ x (resp. x ∧ y) is consistent
R-AT (a, x ∧ y)

R-AT is short for “Restricted aggregative transitivity”. Is there an I/O oper-
ation validating this rule?

• In constrained I/O logic, there is the idea of a constraint set C filtering excess
output. In the present paper, only the body and the head of a rule is treated
as a constraint. Could one generalize the I/O logics with a consistency check
in such a way that one can also work with an independent “constraint set”?
Parent [10] and Dustin [20] use this technique to model defeasible reasoning.
They take the traditional I/O logics as a starting point. What happens if the

13

Parent and van der Torre

system described in the present paper is taken as a starting point? Would it
yield new insights into our understanting of defeasible reasoning?

• What about the I/O logics for positive (static and dynamic) permission de-
scribed by Makinson and van der Torre [9]? The various meta-results they
establish in their paper (like the axiomatisation of positive static permission
with the subverse rules) hold if a traditional I/O logic for obligation is used.
Do similar meta-results can be obtained, using the system described in the
present paper?

• Benzmüller and Parent [1] report some first results regarding the question of
how to “implement” I/O logic using the so-called Shallow Semantic Embedding
approach developed by Benzmüller. Their focus is on the traditional I/O logics.
Can a similar embedding be obtained for the system described in the present
paper?

References
[1] C. Benzmüller and X. Parent. I/O logic in HOL — first steps. Technical report, CoRR,

2018. https://arxiv.org/abs/1803.09681.
[2] J. Broersen and L. van der Torre. Ten problems of deontic logic and normative reasoning

in computer science. In N. Bezhanishvili and V. Goranko, editors, Lectures on Logic
and Computation, volume 7388 of Lecture Notes in Computer Science, pages 55–88.
Springer, Berlin, Heidelberg, 2012.

[3] J. Carmo and A. J. I. Jones. Deontic logic and contrary-to-duties. In D. M. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic: Volume 8, pages 265–343.
Springer Netherlands, Dordrecht, 2002.

[4] L. Goble. Prima facie norms, normative conflicts, and dilemmas. In D. Gabbay, J. Horty,
X. Parent, R. van der Meyden, and L. van der Torre, editors, Handbook of Deontic Logic
and Normative Systems, pages 241–352. College Publications, London. UK, 2013.

[5] G. Governatori and A. Rotolo. Logic of violations: A Gentzen system for reasoning
with contrary-to-duty obligations. Australasian Journal of Logic, 3, 2005.

[6] J. Hansen. Reasoning about permission and obligation. In S. O. Hansson, editor, David
Makinson on Classical Methods for Non-Classical Problems, pages 287–333. Springer,
2014.

[7] D. Makinson and L. van der Torre. Input/output logics. Journal of Philosophical Logic,
29(4):383–408, 2000.

[8] D. Makinson and L. van der Torre. Constraints for input/output logics. Journal of
Philosophical Logic, 30(2):155–185, 2001.

[9] D. Makinson and L. van der Torre. Permission from an input/output perspective.
Journal of Philosophical Logic, 32(4):391–416, 2003.

14

https://arxiv.org/abs/1803.09681

Consistent reusability

[10] X. Parent. Moral particularism in the light of deontic logic. Artif. Intell. Law, 19(2-
3):75–98, 2011.

[11] X. Parent, D. Gabbay, and L. van der Torre. Intuitionistic basis for input/output logic.
In Sven Ove Hansson, editor, David Makinson on Classical Methods for Non-Classical
Problems, pages 263–286. Springer Netherlands, Dordrecht, 2014.

[12] X. Parent and L. van der Torre. “Sing and dance!”. In F. Cariani, D. Grossi, J. Meheus,
and X. Parent, editors, Deontic Logic and Normative Systems, pages 149–165, Cham,
2014. Springer International Publishing.

[13] X. Parent and L. van der Torre. Detachment in normative systems: examples, inference
patterns, properties. In G. Pigozzi and L. van der Torre (guest editors), editors, IfCoLog
Journal of Logics and their Applications, Volume 4 (9), volume 4, pages 2295–3038.
2017.

[14] X. Parent and L. van der Torre. The pragmatic oddity in a norm-based semantics. In
G. Governatori, editor, Proceedings of the 16th Edition of the International Conference
on Artificial Intelligence and Law, ICAIL ’17, pages 169–178, New York, NY, USA,
2017. ACM.

[15] H. Prakken and M. Sergot. Contrary-to-duty obligations. Studia Logica, 57(1):91–115,
1996.

[16] H. Prakken and M. Sergot. Dyadic deontic logic and contrary-to-duty obligations.
In D. Nute, editor, Defeasible Deontic Logic, pages 223–262. Springer Netherlands,
Dordrecht, 1997.

[17] A. Stolpe. Normative consequence: The problem of keeping it whilst giving it up. In
R. van der Meyden and L. van der Torre, editors, Deontic Logic in Computer Science,
9th International Conference, DEON 2008, volume 5076 of Lecture Notes in Computer
Science, pages 174–188. Springer, 2008.

[18] A. Stolpe. Norms and Norm-System Dynamics. PhD thesis, Department of Philosophy,
University of Bergen, Norway, 2008.

[19] A. Stolpe. A concept approach to input/output logic. J. of Applied Logic, 13(3):239–
258, 2015.

[20] D. Tucker. Variable priorities and exclusionary reasons in input/output logic. To appear
in Journal of Philosophical Logic.

Received \jreceived

	Introduction
	Aim of paper
	Broersen and van der Torre's open problem

	Background
	Recycling the output as input
	Topics for future research

