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Abstract

Aggregative deontic detachment is a new form of deon-
tic detachment that keeps track of previously detached
obligations. We argue that it handles iteration of suc-
cessive detachments in a more principled manner than
the traditional systems do. To study this new form of
deontic detachment, we introduce a ‘minimal’ logic for
aggregative deontic detachment, and we discuss various
properties of the logic.

Aggregative Deontic Detachment
The Handbook of Deontic Logic and Normative Systems
(Gabbay et al. 2013) reports on-going development of new
standards for the formal study of normative reasoning. In his
chapter “Alternative semantics for deontic logic”, Hansson
writes:

“Deontic logic has ... a strong semantic tradition. Using
possible worlds and orderings (preference relations)
as their major building-blocks, deontic logicians have
constructed models that can be used to determine the
validity of deontic sentences. ... But, unfortunately, de-
ontic logic also has a long history of getting stuck in
semantic principles that support blatantly implausible
deontic postulates. This is probably a major reason why
the influence of deontic logic ... has been rather weak.”
(Hansson 2013, p. 447)

In the past, deontic logic seems to have been heavily, per-
haps one-sidely, influenced by the modal logic paradigm, to
which Hansson alludes here. However, given all the difficul-
ties the traditionel systems face, deontic logic is currently
undergoing a paradigm shift from modal logic to what may
be called “norm-based semantics” (Hansen 2014). The core
idea is to explain the truths of deontic logic not by some set
of possible worlds among which some are ideal or at least
better than others, but with reference to an explicit set of
given norms or existing moral standards. The present short
paper embraces such a paradigm shift.

To study aggregative deontic detachment we introduce a
new logic for normative reasoning. It builds on so-called
input/output (I/O) logic − one of the candidate systems
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for a new standard described in the Handbook (Parent and
van der Torre 2013). Detachment (or modus-ponens) is the
core mechanism of the semantics being used. The law of
detachment (or modus-ponens) is well-known from proposi-
tional logic: from a conditional statement and its antecedent,
the consequent of the conditional statement is inferred. In
the deontic logic literature, this is referred to as “factual”
detachment. The rule may be given the following form,
where the conditional obligation for x given a is written as
©(x | a):

©(x | a) a
FD ©x

Van Eck asked, “How can we take seriously a conditional
obligation if it cannot, by way of detachment, lead to an un-
conditional obligation?” (van Eck 1982, p. 263). Thus, it is
no wonder that factual detachment is accepted as valid in
many traditional systems of deontic logic, either in its plain
form or in a qualified one. However, the traditional systems
make some extra assumptions that are potentially controver-
sial.

This can be illustrated with the Danielsson-Hansson-
Lewis logic for conditional obligation (Danielsson 1968;
Hansson 1969; van Fraassen 1972; Lewis 1973), which until
recently was mainstream. First, it shares with the so-called
classical theory of rational choice the assumption that an in-
dividual has (well-defined) preferences, and that a normative
judgment is based on a maximization process. Advocates of
−as Simon (1957) terms it−“bounded rationality” have ar-
gued that an approach to rationality in terms of maximiza-
tion is not realistic, because human beings lack the cogni-
tive resources to optimize. Second, such a logic takes the
so-called trichotomy thesis for granted. It is the assump-
tion that comparable items (worlds) can only be better than,
worse than, or equal to each other in overall value. The tri-
chotomy view has been challenged more than once. Some
have argued that these three value relations do not exhaust
the space of possibilities. The best-known proposal for a
fourth sui generis relation is Chang’s argument for “on a
par”−see Chang (2002).

The best way to avoid potential objections is to make as
few assumptions as possible. We believe that the assump-
tion that conditionals obey the detachment rule is one that
can hardly be challenged. Obligations and permissions are



contextual and vary based on the setting. Consequently, a
norm always takes the form of a conditional statement. Some
philosophers like Boghossian (2000) think (rightly, in our
view) that the disposition to reason according to detachment
is constitutive of the possession of the concept of condi-
tional, and thus of the concept of norm. The idea is that,
if some agent says “if a then x”, and if he truly means it,
then he commits himself to detaching x given a. If this agent
refuses to acknowledge that he is justified in employing de-
tachment, this will be good evidence that he fails to under-
stand what is meant by “if ... then”. Accepting detachment
and acquiring an implication are two sides of the same coin.

The present paper focuses on the question of how to han-
dle iterations of successive detachments. The standard I/O
systems handle them, by injecting the following rule, known
as “deontic detachment”:

©(y | x) ©x
DD ©y

That is fully in line with the tradition in deontic logic. For
instance, the Danielsson-Hansson-Lewis semantics for con-
ditional obligation validates such a law. However, poten-
tial counterexamples to DD may be found in the literature
(McLaughlin 1955; Hansson 1997; Makinson 1999). They
all rely on the intuition that the obligation of y ceases to hold
when the obligation of x is violated. This can be illustrated
with the following example, due to Broome (2013, §7.4):

You ought to exercise hard everyday
If you exercise hard everyday, you ought to eat heartily
?? You ought to eat heartily

Intuitively, the obligation to eat heartily no longer holds, if
you do not take exercise. Like the others, this counterex-
ample suggests an alternative (call it “aggregative”) form of
detachment, which keeps track of what has been previously
detached:

©(y | x) ©x
ADD ©(x ∧ y)

This form of detachment has been overlooked in the litera-
ture.

To study aggregative deontic detachment we define a sys-
tem supporting ADD, but not DD. Accepting ADD, but not
DD, implies rejecting the rule known as “weakening”. This
is the rule, where ` stands for the deducibility relation in
propositional logic:

©(x | a) x ` y
W ©(y | a)

ADD and W together imply DD.1
We provide not only a suitable semantics, but also a sound

and complete axiomatization for the new logic. Due to space
limitations we do not give the soundness and completeness
proofs here, but we do present some properties of the new
logic.

1(van der Torre and Tan 1998) define a system PDL validating
ADD, but not DD. However, PDL has a preference-based seman-
tics.

Logic for Aggregative Deontic Detachment
In input/output logic, a normative code is a set N of condi-
tional obligations. A conditional obligation is a pair (a, x),
where a and x are two formulae of classical propositional
logic. We use this notation instead of©(x | a), because the
latter has distinct interpretations in the literature. In the no-
tation (a, x), the first element a is called the body of the rule,
and is thought of as an input, representing some condition or
situation. The second element x is called the head of the rule,
and is thought of as an output, representing what the norm
tells us to be obligatory in that situation. We use the standard
notation (>, x) for the unconditional obligation of x, where
> is a zero-place connective standing for ‘tautology’.

Some further notation. L is the set of all formulae of clas-
sical propositional logic. Given an input A ⊆ L, and a set
of generators N , N(A) denotes the image of N under A,
i.e., N(A) = {x : (a, x) ∈ N for some a ∈ A}. Cn(A)
denotes the set {x : A ` x}, where ` is the deducibility
relation used in classical propositional logic. The notation
x a` y is short for x ` y and y ` x. We use PL as an ab-
breviation for (classical) propositional logic. For the sake of
conciseness, we denote by h(M) the set of all the heads of
elements of M . Moreover, BMA denotes the set of all B such
that A ⊆ B = Cn(B) ⊇M(B). Intuitively, BMA gathers all
the Bs that contain A and are closed under both Cn and M .
Definition 1 (Semantics). x ∈ O(N,A) if and only if there
is some finite M ⊆ N such that,
• M(Cn(A)) 6= ∅, and
• for all B, if B ∈ BMA , then x a` ∧M(B).

We call such a M an A-witness for x. O is a variation of
the operation out3 defined by Makinson and van der Torre
(2000). We have out3(N,A) = ∩{Cn(N(B)) : B ∈ BNA }.

While out3 validates DD,O does not, as illustrated below.
Example 1 (Deontic Detachment). Consider the two norms
N = {(>, a), (a, x)}. We have obligation a ∈ O(N,>),
since M = {(>, a)} is a >-witness for a. We also have
x ∈ O(N, a), since M = {(a, x)} is an a-witness for x. But
we do not have x ∈ O(N,>). To see this, it suffices to go
through all the non-empty subsets of N , and check that, for
each of them, the smallest relevant B does not deliver heads
whose conjunction is equivalent to x:

M B M(B)
{(>, a)} Cn(a) {a}
{(a, x)} Cn(∅) ∅

{(>, a)(a, x)} Cn(a, x) {a, x}
We defineO(N) = {(A, x) : x ∈ O(N,A)}. This defini-

tion leads to an axiomatic characterization that is much alike
those used for conditional logic.

Given a set R of rules, (a, x) is said to be derivable from
N if (a, x) is in the least superset of N that is closed un-
der the rules in R. This may be written as (a, x) ∈ D(N),
or equivalently x ∈ D(N, a). The specific rules of interest
here are described below. They are formulated for a single-
ton input set A (for such an input set, curly brackets will be
omitted). SI, EQ and ACT abbreviate “strengthening of the
input,” “equivalence” and “aggregative cumulative transitiv-
ity.”



Definition 2 (Proof system). (a, x) ∈ D(N) if and only if
(a, x) is derivable from N using the rules {SI, EQ, ACT}.

(a, x) b ` a
SI

(b, x)

(a, x) x a` y
EQ

(a, y)

(a, x) (a ∧ x, y)
ACT

(a, x ∧ y)
ACT yields ADD as a special case (a is >).
Where A is a set of formulae, (A, x) ∈ D(N) means that

(a, x) ∈ D(N), for some conjunction a of elements in A.
Moreover, D(N,A) is {x : (A, x) ∈ D(N)}.
Theorem 1 (Completeness). O(N,A) = D(N,A)

Below is an illustration.

Example 2 (“Change your mind!”). Hansson (1997) gives
the following example, with credit to Pörn:

“Consider the hoary example of the man who ought to
go to a meeting on August 5 and who ought to send, on
August 2, a note explaining his absence, if and only if
he is in fact going to be absent.” (1997, p.425-6)

The example is structurally identical to the Chisholm exam-
ple (Chisholm 1963). The norms involved may be rendered
as N = {(>,m), (m, s)(¬m,¬s)}, where m and s are
for attending the meeting and sending a note, respectively.
Given input >, m ∧ s is outputed, but not s. This is as it
should be. The obligation of s will not be triggered unless
the agent is going to fulfil his primary obligation of m. In
the violation context ¬m, m∧ s is still outputed. If not, then
the following intuitive deontic reasoning pattern would not
be supported:

“August 2 arrives, and though he is able to attend the
meeting, he has no intention of doing so. He argues: ‘I
ought to change my mind, forbear note-writing, and at-
tend the meeting. ... My present fulfillment of this obli-
gation will help make up for my sinfully staying at home
on the fifth!’.” (Hansson 1997, p. 426)

In the remainder of this paper, we consider some proper-
ties of this new logic.

Properties
Deontic properties
Exact factual detachment (EFD) and violation detection (VD)
characterise what is special about deontic logic.

EFD (x, y) ∈ N ⇒ y ∈ O(N, x)
VD (A, y)⇒ (A ∪ {¬y}, y)

Exact factual detachment represents that if there is a norm
with precisely the context as body, then the output contains
the head. On the one hand, exact factual detachment is rela-
tively weak, as the context has to be precisely the body. The
much stronger factual detachment principle (FD) discussed
in the introduction imposes detachment when the body is
implied by the context. On the other hand, exact factual de-
tachment principle is already quite strong, as in context a
from the norm (a,⊥) the contradiction ⊥ is detached, and

in case of a dilemma of (a, x) and (a,¬x), in context a both
x and ¬x are detached.

Violation detection says that violations are explicit. The
distinctive feature of norms and obligations with respect to
other types of rules and modalities is that they can be vio-
lated. For example, dilemma examples arise because some
obligation has to be violated, and contrary-to-duty exam-
ples arise because some obligation has been violated. Modal
logic offers a useful representation for violations. An obliga-
tion for x has been violated if and only if we have ¬x∧©x.
In our notation with explicit norms, this is x ∈ O(N,A)
with ¬x ∈ Cn(A).
Theorem 2. O satisfies EFD, FD and VD.

Logical properties
Substitution (SUB), replacements of logical equivalents
(RLE), implication (IMP) and paraconsistency (PC) say
something about logic.

SUB x ∈ O(N,A)⇒ x[σ] ∈ O(N [σ], A[σ])
RLE N ≈M ⇒ O(N) ⊆ O(M)
IMP O(N,A) ⊆ Cn(m(N) ∪A)
PC x ∈ V (N,A)⇒ ∃M ⊆ N : x ∈ O(M,A)

and O(M,A) ∪A consistent
Substitution is well known from classical propositional

logic. We use the notation x[σ] to denote a substitution in-
stance of x. Thus, x[σ] is obtained from x by replacing uni-
formly, in x, all occurrences of a propositional letter by the
same propositional formula. A[σ] and N [σ] extend the no-
tion of substitution instance to sets of formulae, and sets of
norms in the straightforward way.

Replacement for logically equivalent expressions ex-
presses a principle of irrelevance of syntax. For N ≈ M ,
read “N is (logically) equivalent to M”. The simplest way
to define ≈ is as follows: N ≈ M whenever M is obtained
from N , by replacing each (b, y) ∈ N with some (c, z) such
that b is equivalent with c, and y is equivalent with z.

Implication makes use of the so-called materialisation of a
normative system, which means that each norm (a, x) is in-
terpreted as a material conditional a → x, i.e. as the propo-
sitional sentence ¬a ∨ x. The implication property says that
if the materializations of N , written as m(N), do not imply
a → x, then (a, x) /∈ O(N). This represents the idea that
we cannot derive more than we can derive in propositional
logic. In general, implication in the base logic is the upper
bound.

To prevent explosion we do not want to derive the whole
language, unless maybe in pathological cases in which the
normative system contains a norm for each propositional
formula. A consequence relation may be said to be paracon-
sistent if it is not explosive, though there are various ways to
make this formal.

To define our paraconsistency property, we distinguish
obligations representing violations from other obligations.
That is, we decompose an operator O(N,A) into two oper-
ators V (N,A) and V (N,A), such that

• V (N,A) = {x ∈ O(N,A) | ¬x ∈ Cn(A)}
• V (N,A) = O(N,A) \ V (N,A)



Trivially, we have

O(N,A) = V (N,A) ∪ V (N,A)

The basic idea of our paraconsistency property is that obli-
gations in V can be derived from a set of norms M in N ,
such that this set of norms M does not explode.

The underlying intuition to restrict to a set of norms is
raised in the following example. If we can derive©(y ∧ z)
from ©(x ∧ y) and ©(¬x ∧ z), and we have substitution
and replacements of logical equivalents, then we also derive
©y from ©x and ©¬x, in other words, we have deontic
explosion. This can be verified by replacing y by x ∨ y and
z by ¬x ∨ y. Therefore, we restrict the set of norms we use
to a set of norms which is in some sense “consistent” with
the input A.
Theorem 3. O satisfies SUB, RLE, IMP and PC.

Norm change properties
The next two properties are: norm monotony (NM) and norm
induction (NI). We call them “norm change properties”, be-
cause the N is no longer held constant.

NM O(N) ⊆ O(N ∪M)
NI M ⊆ O(N)⇒ O(N) = O(N ∪M)

The most interesting property is norm induction. It says
that if there is an output x for an input a, and we add the
norm (a, x) to the normative system, then for all inputs, the
output of the normative system stays the same. This is called
“norm induction”, because the norm is induced from the re-
lation between facts and obligations.
Theorem 4. O satisfies NM and NI.

Together, exact factual detachment, norm monotony and
norm induction are equivalent to saying that O is a closure
operator.

Reusability properties
The reusability properties relate the system to standard I/O
logic. Their formulation appeals to some key notions of so-
called constrained input/output logic, developed by Makin-
son and van der Torre (2001) in order to reason about norm
violation:

conf(N,A) = {N ′ ⊆ N | out(N ′, A) ∪A consistent }
maxf(N,A) = {N ′ ∈ conf(N,A) | N ′ ⊆ -maximal }
outf(N,A) = {out(N.A) | N ′ ∈ maxf(N,A)}
The first property listed below represents inclusion in

reusable output (IO). The following two properties define re-
dundancy R and strong redundancy SR.

IO O(N,A) ⊆ out3(N,A)
R outf3(N,A) = outf3(O(N), A)

SR outf3(N ∪M,A) = outf3(O(N) ∪M,A)
Redundancy is worth a mention, because it makes a bridge

to constrained input/output logic.

Summary
This paper has introduced a ‘minimal’ logic for aggrega-
tive deontic detachment, with a sound and complete ax-
iomatization. Various properties of the logic have been dis-
cussed. Summarizing, the operator O(N) is a closure oper-
ator, which means that it satisfies factual detachment, norm

monotony and norm induction. In addition, it satisfies sub-
stitution and replacement of logical equivalents. Finally, the
operator satisfies violation detection, implication, and para-
consistency.
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