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Abstract. The aim of the paper is to bring to the realm of game theory
the well-known deontic notion of contrary-to-duty (CTD) obligation, so
far not investigated in relation to optimality of strategic decisions. We
maintain that, under a game-theoretical semantics, CTDs are well-suited
to treat sub-ideal decisions. We also argue that, in a wide class of interac-
tions, CTDs can used as a compact representation of coalitional choices
leading to the achievement of optimal outcomes. Finally we investigate
the properties of the proposed operators.
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1 Introduction

Horty’s interaction-theoretical account of deontic logic [9] has shown that when
classical deontic concepts, such as obligations, permissions and prohibition, are
interpreted in game-like structures they acquire new meanings in terms of opti-
mality of choices and shed new light on strategic interaction.1

1 As a matter of fact the models Horty uses to interpret his deontic operators are
not strictu sensu strategic games in the sense of [12], but can be thought as a
strategic game forms — technically, games without preference relations — endowed
with a unique utility function (and not one per player, as happens in strategic
games), representing an abstract notion of betterness applying to all players. As the
following quotation shows, Horty’s proposal consists of viewing choices that should
be performed as carrying a meaning in terms of an underlying notion of optimality,
i.e. as optimal choices at players disposal.

“In the past, the task of mapping the relations between deontic logic and
act utilitarianism has resulted in surprising difficulties, leading some writers
to suggest the possibility of a conflict in the fundamental principles under-
lying the two theories. One source of these difficulties, I believe, is the gap
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Up till now several follow-up contributions, starting with Kooi and Tam-
minga [10], and continuing with Broersen et al. [4], and Turrini et al. [19], have
pushed Horty’s view further, working out notions such as moral obligations in
the interest of a set of players, socially optimal norms, agreements and contracts,
in a full-fledged game-theoretical framework, where Horty’s utilitarian approach
is made relative to players’ (and coalitions’) specific preferences.

Along the same line of these last contributions we aim at bringing to the
realm of game theory the well-known deontic notion of contrary-to-duty (CTD)
obligation, which states what should be done in case some primary obligation is
already violated, and which has so far not been investigated for the special case
of strategic interaction.

Marek Sergot (mainly together with Henry Prakken in [15, 14]) made funda-
mental advances in the conceptual and logical study of CTDs. These include:

– the definition of a CTD obligation as presupposing a context in which a
primary obligation is already violated;

– the compilation of a set of benchmark examples against which CTDs must
be assessed;

– the use of consistency provisos to block undesirable consequences stemming
from the logical representation of CTDs scenarios;

The examples and the constraints studied by Marek Sergot were not intended
to address CTDs in situations where strategic interaction plays an explicit role,
which is what the present article is concerned with.

Our main observation is that, when faced with interactive decision-makers,
issuing commands of the type “it is obligatory that ϕ, but if ¬ϕ then it is obliga-
tory that ψ” bears consequences in terms of strategic decisions. In particular we
will see that if the equation suggested by the game-theoretical approach to deon-
tic concepts obligatory actions are rational decisions holds for classical deontic
operators, an alternative equation, i.e. contrary-to-duty actions are second-best
decisions, holds for contrary-to-duty obligations.

Concretely, we argue that contrary-to-duty obligations can be meaningfully
used to reason about the achievement of those optimal outcomes that can only be
obtained by making second-best choices. One instance of this class is provided by
games in which players are in possession of complementary goods and have the
possibility of exchanging some of them, as illustrated by the following example.

Example 1 (Left & right shoes). Consider a scenario in which two players, i and
j, possess two different, but complementary, types of resources: left shoes and

between the subjects of normative evaluation involved in the two areas: while
deontic logic has been most successfully developed as a theory of what ought
or ought not to be, utilitarianism is concerned with classifying actions, rather
than states of affairs, as right or wrong. The present account closes this gap,
developing a deontic logic designed to represent what agents ought to do within
a framework that allows, also, for the formulation of a particular variant of act
utilitarianism, the dominance theory” [9, p.70].



Contrary-To-Duties in Games 3

right shoes. The starting situation consists of player i possessing two left shoes
and player j two right shoes. The underlying assumption is that players gain
more utility by possessing more resources. In addition it is better for players to
possess one resource of each type than possessing two resources of the same type.
Finally, we will assume that, at the moment of taking a decision, each player is
aware of the other player’s options, but need not be aware of his preferences.2

The game consists of a single exchanging round. During this round each
player decides how many of its resources it wants to concede to the other player.
Considering that at the beginning each player has two resources of the same type,
each player has three available options: conceding none, one or two resources to
the other. The players cannot negotiate during the exchange and both have to
decide and exchange simultaneously.3

In this first example players are taken to be utility maximizers — an assump-
tion that will be dropped later on in the paper — and, intuitively, their best
strategy in the game is the decision of keeping their resources for themselves.
In this case, considering that both players adopt the same strategy, there is no
exchange of resources between the participants, leaving the starting situation
unchanged. Notice however that the outcome of the game is not an optimal out-
come, as players could be better off by exchanging some goods, rather than not.
Notice as well that if players acted with no greed, conceding all their resources,
the outcome of the game would be no good either.

Starting out from this observation, we can point out how normative state-
ments imposing players to behave extremely selfishly — but a similar argument
can be brought for extremely altruistic behavior — would lead the system to
suboptimal outcomes. Instead, we would like to tell our players to behave sub-
ideally, conceding some resources but not all, in such a way that even in the
presence of sub-ideal decisions an ideal outcome can be reached.

Paper Structure The paper is structured as follows. In Section 2 we intro-
duce the main technical notions coming from the literature on game theory and
deontic logic. In Section 3 we describe the mathematical structures that we use
to interpret our deontic language, and which is studied in Section 4. All the
main definitions are illustrated by means of the abovedescribed example, which
is comprehensively analyzed in Section 5. The conclusive section wraps up the
paper and suggest ideas for future development.

2 As will be clear later, even though we will model the example as a one-shot strate-
gic game, we will not need to postulate demanding epistemic assumptions such as
common knowledge of the game structure (players know each others’ strategies and
preferences) or common knowledge of rationality (i.e. players are rational and ev-
eryone knows this and everyone knows that everyone knows this etc.), but it will be
enough to have players that know what their opponents can do.

3 Simultaneity of events is a common feature in game-theoretical examples and should
be thought as an expedient to model players’ unawareness of the actual choices that
their opponents have taken.
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2 Preliminaries

This section introduces the mathematical preliminaries needed in the rest of
the paper. We start with consequentialist models [10], a simplification of STIT
models [2] studied by Horty, which represent the coalitional power of players in
games; then we move on to treat preference relations and a notion of dominance
among choices available to coalitions.

The present work deals with strategic interaction. Therefore the basic ingre-
dients we will be working with are a finite set N , to be understood as a set of
players, and a setW to be understood as a set of alternatives. Players are denoted
i, j, k, . . . while sets of players, i.e. elements of 2N , are denoted C,C ′, C ′′, . . . and
are henceforth called coalitions. The coalition made by all players, i.e. the set N ,
will be referred to as the grand coalition, while the coalition made by the play-
ers not belonging to a coalition C will be denoted as C and referred to as the
set of opponents of C. Alternatives are denoted u, v, w, . . . and are also called
outcomes, states or worlds. Players are assumed to have preferences over the al-
ternatives. Therefore, each player i is endowed with a preference order (�i)i∈N ,
a total preorder on the set of alternatives, where v �i w has the intuitive reading
that outcome v is at least as good as outcome w for player i. The corresponding
strict partial order is defined as expected: v �i w if, and only if, v �i w and
not w �i v, to mean that for player i outcome v is strictly better than outcome
w. The notation ≺i,�i for the reverse relations will be used as well when no
confusion can arise.

2.1 Consequentialist Models

The theory of agency adopted in this paper takes inspiration from the one pre-
sented by Horty in [9] to study deontic notions within a utilitarian perspective.
There an interpretation of coalitional rationality is proposed, based on STIT
models [2], a branching-time account of coalitional ability. For the present pur-
poses, an adoption of the full-blown history-based models used by Horty would
take this work far from its scope, and therefore we resort to the simpler conse-
quentialist models, that share with Horty’s models the local features that are
necessary to treat one shot interactions. Consequentialist models have been used
already as one-shot STIT counterpart by Kooi and Tamminga [10], who also
present a model of coalitional rationality with classical utility functions, which
has much in common with our account.

Here is the formal definition.

Definition 1 (Choice Structures). A choice structure is a triple

(W,N,Choice)

where W is a set of outcomes, N a finite set of players, and Choice : 2N → 22
W

a function defined as follows:

– for each i ∈ N , Choice({i}) is a partition of W ;
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– Let S be the set of functions s : N → 2W such that for each i ∈ N , s(i) ∈
Choice({i}). We have that for C ⊆ N :

•
⋂

i∈C s(i) 6= ∅, for every s ∈ S, i.e. the pairwise intersection of players’
choices is nonempty.

• Choice(C) = {
⋂

i∈C s(i) | for s ∈ S}, i.e. coalitional choices are con-
structed by taking the pairwise intersection of individual choices.

– |Choice(N)| = |W |, i.e. players together can force any available outcome.4

The definition illustrates choice structures as a description of how groups
of players (possibly empty, or made by one single player) are able to decide
the future course of events. Choice structures model the possible decisions of
coalitions by means of the following two key features:

– The choices available to a coalition are a partition of the set of possible
states. The sets in this partition, i.e. the available choices, intersect nontriv-
ially 5 with each set in the partition of the opposing coalition. In this view,
choosing means deciding that the resulting outcome of the interaction will
be contained in some set of worlds, leaving to the opponents the possibility
of choosing within that set;

– The choices available to a coalition are a combination of all the possible
choices available to its members, which is obtained by pairwise intersecting
their choice structures. In this view, a coalition of players is assumed to
be able to fully coordinate their members and to dispose of their collective
choices.

These features make choice structures mathematically equivalent (modulo
coalitions) to strategy profiles in games.6

Example 2. The left shoes & right shoes game in Example 1 can be described as
a choice structure. In Table 1, we show its matrix representation.

The columns of the table represent the possible choices of player i: K0,K1

and K2. For each choice Kn, n represents the number of resources that the player
i concedes to the opponent during the exchanging round. In the same way, the
rows of the table represent the possible choices of player j.

The cells of the table represent the results of the exchange round. The top-
right corner of each cell represents the resources that player i owns once that
combination of choices is made. Similarly the bottom-left corner represents the

4 This condition is sometimes referred to as rectangularity [1]. Rectangularity is not
assumed in [10], but it is presupposed by all game-theoretical matrix representation
of choice structures.

5 The intersection is nonempty.
6 Strategy profiles are classically modelled as bijective functions from the set of indi-

vidual strategies to the set of outcomes — often represented by vectors of utilities —
It is straightforward to notice that the strategy profiles modulo a coalition generate
partitions of the set of outcomes that are obtained by pairwise intersecting the par-
titions assigned to the members of that coalition. This simple observation allows us
to represent choice structures as matrixes, just like standard strategic game forms.
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resources owned by player j after the exchange. The number of resources pos-
sessed by player p ∈ {i, j} after the exchange is represented as follows: xp|yp
where xp refers to the number of right shoes and yp to the left shoes possessed.

@
@@j
i

K0 K1 K2

S0

HHH
HH2|0
0|2HHH

HH2|1
0|1HHH

HH2|2
0|0

S1

HH
HHH1|0

1|2HH
HHH1|1

1|1HH
HHH1|2

1|0

S2

H
HHHH0|0

2|2HHHHH0|1
2|1HHHHH0|2

2|0

Table 1. Strategy outcomes for left shoes & right shoes in a choice structure

Utility calculation It can be noted that a preference relation can be assigned
to individual players, once we are able to calculate the invidual utility for each
outcome. In our case the utility up for each player p ∈ {i, j} after the exchange
round is calculated using the following evaluation function:

– up = 2xp + yp, whenever yp > xp;
– up = 2yp + xp, otherwise.

Intuitively the utility function is computed in two steps:

1. The first step counts the individual value of the single resources.
2. The second step attributes additional value to the outcome if there is at least

one element per resource type, representing the additional value of having
both of them.

The outcomes calculated by using the utility functions are represented in
Table 2. In the cells of the table are shown the outcomes for the players i and j
dependent on the choices made. On the top-right corner of each cell is represented
the outcome for player i and in the bottom-left the outcome for player j.

Consequentialist models are obtained by adding to choice structures a val-
uation function, which gives a description of the relevant properties holding at
each state.

Definition 2 (Consequentialist Models [10]). A consequentialist model is
a pair (Γ, V ) where Γ is a choice structure and V is a valuation function, i.e. a
function from the set of states W to the powerset of a countable set of proposi-
tions Prop, with the usual understanding that propositions that get assigned to
a state should be understood as true at that state.

The valuation function tells us what propositions correspond to what out-
comes or worlds. By using them we will be able to reason logically on the prop-
erties of choice structures.
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@
@@j
i

K0 K1 K2

S0
@

@@2
2@

@@4
1@

@@6
0

S1
@

@@1
4@

@@3
3@

@@4
1

S2
@

@@0
6@

@@1
4@

@@2
2

Table 2. Utilities for left shoes & right shoes added to its choice structure

2.2 Dominance

As for the notion of coalitional rationality, we employ the notion of dominance,
which represents the comparison of choices at a coalition’s disposal, taking the
moves of the opponents into account. As the dominance relations compares sets
of outcomes and the preference relations are formulated on individual outcomes,
the following definition bridges the gap between the two notions.

Definition 3 (Lifting). Let X,Y ⊆ W be two sets of outcomes and let i ∈ N
be a player. X is preferred to Y by i — which we denote X Di Y — whenever
w �i w

′ for all w ∈ X and w′ ∈ Y .

The lifting we have just defined states that a choice X is better than a
choice Y only if all elements in X are better than all elements in Y , relative
to the preferences of some player. This type of lifting, often called for all -
for all lifting, is fairly simple and yet particularly well-suited for characterizing
standard solution concepts in games.7 We are now ready to define the notion of
dominance among coalitional choices.

Definition 4 (Dominance). Let K,K ′ ∈ Choice(C) and �i⊆W ×W a pref-
erence relation over the outcomes for each player. K dominates K ′ if and only
if for all S ∈ Choice(C) we have that K ∩ S Di K

′ ∩ S for all i ∈ C.

Intuitively what the definition says is that, when a coalition C disposes of
two choices K and K ′, K will be preferred to K ′ in case all worlds in K ∩S are
better than those in K ′ ∩ S for each member of C, for each possible choice S of
the opposing coalition.8

Definition 4 notably simplifies what is to be found in the literature. Both in
[9] and [10] a utility function is employed associating to each outcome (histories
in Horty’s framework) an element of a closed interval in the reals (positive reals
in Horty’s framework, the interval [−5, 5] in Kooi and Tamminga’s framework).

7 For a discussion on its merits and the possible alternatives , we refer to [18].
8 The notion of dominance clearly resembles that of dominant strategy typical of strate-

gic games [12].
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Example 3. In Example 1, based on the outcomes shown in Table 2, the domi-
nance relation among coalitional choices can be constructed as follows.

Consider {j}, the coalition consisting only of player j. We have Choice({j}) =
{S0, S1, S2}. According to Definition 4, choice S0 dominates S1 and S2, because
∀Kn ∈ Choice({i}) we have that S0 ∩Kn Dj S1 ∩Kn Dj S2 ∩Kn.

Symmetrically, consider {i}. We have Choice({i}) = {K0,K1,K2}. Accord-
ing to Definition 4, choice K0 dominates K1 and K2, because ∀Sn ∈ Choice({j})
we have that K0 ∩ Sn Di K1 ∩ Sn Di K2 ∩ Sn.

As expected, from the point of view of each player, the dominant strategy
for him is to play selfishly, or in other words to keep the resources for himself.

F-dominance As pointed out in the introduction several contributions have
generalized Horty’s notion of dominance. In the present paper we focus on the
notion of dominance in the interest of some coalition, first studied by Kooi and
Tamminga, although in a more involved formulation that we simplify as follows.

Definition 5 (F-dominance [10]). Let K,K ′ ∈ Choice(C), F ⊆ N and �i⊆
W ×W a preference relation over the outcomes for each player. K F-dominates
K ′ if and only if for all S ∈ Choice(C) and for all i ∈ F we have that K ∩ S Di

K ′ ∩ S.

Intuitively the definition provides a notion of dominance among choices of
a coalition C looked at from the point of view of another coalition F . Obvi-
ously, when F and C coincide, F -dominance and dominance do, as well. As
F -dominance is more general than dominance it can be used to analyze a wider
class of situations when players do not necessarily behave selfishly. A similar
stance is taken in [19] to reason on exchange of favours in deontic logic.

Example 4. In Example 1 the analysis of F -dominance among coalitional choices
can be carried out as follows. Consider that each single player now takes a
decision looking at the welfare of its opponent. With this in mind the coalition {i}
adopts a {j}-dominance, while {j} adopts a {i}-dominance. The F-dominance
in Definition 5, boiling down in our case to a C-dominance for each coalition C,
indicates as ideal the strategy of playing generously.

According to Definition 5, choice S2 {i}-dominates S1 and S0 because ∀Kn ∈
Choice({i}) we have that S2 ∩Kn Di S1 ∩Kn Di S0 ∩Kn.

Likewise, if player i makes his choices based on the utility for player j (as
shown in the bottom-left of the cells), choice K2 {j}-dominates K1 and K0,
because ∀Sn ∈ Choice({j}) we have that K2 ∩ Sn Dj K1 ∩ Sn Dj K0 ∩ Sn.

3 Models

This section brings together the model-theoretic notions defined in the previous
part of the paper and defines the structures on which to interpret our deontic
language.
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We will work with consequentialist models (Definition 2) endowed with a
preference order �i for each player i ∈ N , i.e. our structures will have the form

(Γ, V, (�i)i∈N )

where Γ and V are given as in Definition 2.
In the style of Kooi and Tamminga, we introduce a relation of choice equiva-

lence in a consequentialist model. The idea is that, if two worlds w and w′ are in
this relation with respect to a coalition C, then the coalition cannot alone elect
either outcome to be the final outcome of the game.

Definition 6 (C-choice equivalence). Let Γ = (W,N,Choice) be a choice
structure. The relation ∼C⊆W×W of C-choice equivalence is defined as follows:

w ∼C w′ if and only if w ∈ K implies that w′ ∈ K, for some K ∈ Choice(C)

Intuitively, if two worlds w,w′ are in a relation w ∼C w′, then only the opponents
of coalition C can decide whether the outcome will be w or w′ or some other
outcome linked to them by the same relation.

Proposition 1. Let Γ = (W,N,Choice) be a choice structure. The set

{[w] | w′ ∈ [w] if and only if w ∼C w′}

is a partition of W .

Proof. Straightforward. Notice on the fly that the set {[w] | w′ ∈ [w] iff w ∼∅ w′}
has cardinality 1.

4 Language and Semantics

In this section we introduce the syntax of our language and the interpretation of
its formulas in terms of the models provided in the previous section. We start out
by defining the language L, an extension of propositional logic with modalities
to reason about obligations and coalitional choices.

Definition 7 (Syntax). Let Prop be a countable set of atomic propositions.
The formulas of the language L have the following grammar:

p | ¬ϕ | ϕ ∧ ϕ | Eϕ | [C]ϕ | ©Cϕ

where p ∈ Prop and C ⊆ N . The informal reading of the modalities is “there
exists a world satisfying ϕ”, “coalition C achieves ϕ”, “it is obligatory for coali-
tion C to choose ϕ”. Within this language the fact that a coalition can achieve
a property is expressed by formulas such as E[C]ϕ, intuitively saying that there
is a world where coalition C chooses ϕ. This reading of strategic ability is in line
with the standard treatment of STIT-like logics in Kripke models [3].
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Definition 8. Let M be a consequentialist model with a set of outcomes W and
let w ∈ W . The interpretation of the formulas in Definition 7 with respect to a
tuple M,w is as follows:

M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= [C]ϕ iff M,w′ |= ϕ for all w′ with w ∼C w′

M,w |= Eϕ iff there exists w′ ∈W such that M,w′ |= ϕ
M,w |=©Cϕ iff i)ϕM ∈ Choice(C) and

ii)ϕM dominates each K 6= ϕM with K ∈ Choice(C)

where ϕM = {w |M,w |= ϕ} is called the extension or truth set of formula ϕ.
We omit the reference M when it is clear which model is intended.
The interpretation of the obligation modality ©C deserves some comment.

The evaluation rule says that the formula ϕ in its scope is obligatory for coalition
C if the proposition that ϕ expresses:

– is an available choice for C,
– it dominates every other available choice for C.

Obligation modalities in this language boild down to succints statements on
how coalitions should rationally play, comparing each available choice against the
possible reactions of their opponents. Different kind of obligations — ‘altruistic’
ones — will be introduced later on in the paper and will make use of the notion
of F -dominance (Definition 5).

Notice that by the definition of Choice Structure (Definition 1) we can for-
mulate a universal modality such as E looking at what the empty coalition can
achieve.

Proposition 2. For each consequentialist model M and each w ∈ W we have
that M,w |= Eϕ↔ ¬[∅]¬ϕ.

Proof. Direct consequence of Definition 1.

4.1 Contrary-to-Duty Obligations

In this section we expand the language with formulas of the type ©C(ψ/ϕ), to
express what coalition C should do if some state of affairs ϕ is already the case.
The idea is that, if ϕ represents a violation of a main obligation, then©C(ψ/ϕ)
is a contrary-to-duty obligation.

Definition 9 (CTD). Let M be a consequentialist model and w a state in its
domain. The interpretation of formulas of the type ©C(ψ/φ) is as follows:

M,w |=©C(ψ/ϕ) iff i) ψM ∈ Choice(C) and

ii) ψM dominates each K 6= ψM ∈ Choice(C) \ ϕM

where ϕM is the complement of ϕM , and \ is set-theoretic difference.
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Definition 9 behaves similarly to the evaluation rule for the monadic ©C . The
only difference is that the set of ¬ϕ-worlds (whose corresponding formula ϕ, when
in the scope of ©C , corresponds to the best option) is no longer available in the
choice set. The intuition behind formulas of the type ©C(ψ/ϕ) is that once the
best option ¬ϕ is ruled out, coalition C is left with ψ as best alternative. To quote
Hansson, the role of CTDs is to “make the best out of the sad circumstances” [7].

One might refer to Choice(C) \ϕM as a zoom-in operation. Its main effect is to
rule out outcomes that are no longer relevant in the comparison process.

Technically, the game-theoretical account of CTDs can be described as a
combination of the Lewis/Hansson preference-based account of conditional obli-
gation (see [7] and [11]) with so-called neighborhood semantics. To see this,
Table 3 below gives a typical model of {©j¬p,©j(q/p)} − from now on we
will drop curly brackets for singleton C. The numbers show the preference order
for j. ©j¬p holds, because S3 = ¬pM dominates S2 and S1. When evaluating

@
@@j
i

K1 K2

S1 w1 : p,¬q w2 : p,¬q
0 0

S2 w3 : p, q, r w4 : p, q
0.5 0.5

S3 w5 : ¬p,¬q, w6 : ¬p,¬q,
1 1

Table 3. A model of {©j¬p,©j(q/p)}

©j(q/p), S3 is taken out of from the choice set. So, ©j(q/p) holds, because S2

dominates S1. The resemblance with the Hansson/Lewis account should be ob-
vious to the reader, as the latter also interprets the obligatory worlds as the best
worlds according to a given preference order. If the preference orders coincide,
the obligations returned are the same. For instance an Hansson/Lewis account
would also yield ©j¬p, because the best worlds are all ¬p-worlds. And it would
also give ©j(q/p), because the best p-worlds are all q-worlds.

4.2 Some valid/invalid formulas

We first note that the monadic ©C can be defined in terms of the dyadic
©C(−/−) in the usual way.

Proposition 3. For each consequentialist model M and each w ∈ W we have
that M,w |=©Cϕ↔©C(ϕ/>).

Proof. Choice(C) \ >M = Choice(C).
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Even if the game-theoretical account of CTD bears resemblance with the
Hansson/Lewis one, there is an importance difference between the two. The op-
erator©C(−/−) does not satisfy the principle known as “Weakening the Conse-
quent”, and neither does it satisfy the law “S” below, named after Shoham [16]
who first discussed it in the context of the study of non-monotonic reasoning.
This is because the evaluation rule also incorporates some aspects of so-called
neighborood semantics. This is condition i) in Definition 9. For ©C(ψ/ϕ) to
be true, the truth set ψM must be part of the choice set of coalition C. As a
result of this, the principle that ‘ought implies can’ holds in the following form:
©Cϕ→ E[C]ϕ.

Proposition 4. Let A be the universal modality, defined as the dual of E. Non-
validities include

(©C(ψ/ϕ) ∧A(ψ → ξ))→©C(ξ/ϕ) (WC)

(©C(ψ/ϕ ∧ ϕ′)→©C(ϕ′ → ψ/ϕ) (S)

Proof. Table 4 depicts a typical countermodel to ©j(p ∧ q) → ©jp, which is a
special case of WC.

@
@@j
i

K1 K2

S1 ¬p,¬q ¬p,¬q
0.25 0.25

S2 ¬p, q ¬p, q
0.5 0.5

S3 p,¬q p,¬q
0.75 0.75

S4 p, q p, q
1 1

Table 4. Failure of WC

Since S4 = p ∧ qM dominates S1, S2, and S3, the obligation ©j(p ∧ q) holds.
But pM = S3 ∪ S4, and pM is not in the choice set of j. Therefore ©jp fails.

Table 5 shows a countermodel to S.
Since S3 = rM dominates S2, the obligation ©j(r/p ∧ q) holds. But q → rM =
S1 ∪ S3 6∈ Choice(j), and thus ©j(q → r/p) fails. ut

The same pattern is involved in the failure of the principle CTD below, which
is weaker than WC:

©C ϕ ∧©C(ψ/¬ϕ)→©C(ϕ ∨ ψ) (CTD)

Failure of these laws might be considered bad news. Especially (CTD) seems
constitutive of the notion of CTD. Roughly speaking, it says that the obligation
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@
@@j
i

K1 K2

S1 p,¬q,¬r p,¬q,¬r
0.05 0.05

S2 p, q,¬r p, q,¬r
0.25 0.25

S3 p, q, r p, q, r
0.5 0.5

Table 5. Failure of S

of ϕ together with the obligation of ψ given ¬φ entail that the agent is under
the obligation of ϕ (the best) or ψ (the second-best).

(WC) has good intuitive support too. As Sergot and Prakken observe, “some-
one who is told not to kill must surely be able to infer that he or she ought not
to kill by strangly, say” [14, p.224].

We would however like to point out that the abovementioned failures are all to
be attributed to condition i) in Definition 9, which does not impose monotonicity
of coalitional action (being able to choose φ does not imply being able to choose
φ∨ψ). We will see, at the end of this section, that a slightly more liberal definition
on choice sets, requiring closure under supersets, allows one to validate these
laws.

In spite of the above, Proposition 5 shows that the logic is not as weak
as one might think at first sight, listing a number of inference patterns that are
validated. Note that Hansson’s official system DSDL3 supports these laws either
as they stand or in a slightly modified form.

Proposition 5 (Validities). For each consequentialist model M and each w ∈
W we have that

M,w |= A(ϕ↔ ϕ′)→ (©C(ψ/ϕ)↔©C(ψ/ϕ′)) (Equivalence)

M,w |=©C(ψ/ϕ) ∧©C(ψ′/ϕ) ∧ E(ψ ∧ ψ′)→©C(ψ ∧ ψ′/ϕ)
(Consistent And)

M,w |=©C(ψ/ϕ) ∧©C(ψ/ϕ′) ∧ E(¬ϕ ∧ ¬ϕ′)
∧ E[C]¬ϕ ∧ E[C](¬ϕ′)→©C(ψ/ϕ ∨ ϕ′)

(Consistent OR)

M,w |=©(ψ/ϕ) ∧©(ξ/ψ)→©(ξ/ϕ) (DD)

M,w |=©C(ψ/ϕ) ∧Aϕ→©Cψ (SFD)

The labels DD, and SFD stand for “Deontic Detachment”, and “Strong Fac-
tual Detachment”, respectively.

The law ‘Equivalence’ permits the replacement of equivalent sentences in the
antecedent of deontic conditionals. ‘SFD’ is a principle of modus-ponens (or
detachment) for obligations. It tells us when a conditional obligation can be
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deconditionalized: the antecedent must be settled as true.9 The two appear as
they stand in DSDL3.

The law ‘Consistent And’ restricts aggregation to those obligations whose
consequents are jointly possible. Similarly for the law ‘Consistent OR’. It al-
lows to reason by cases if some consistency proviso is satisfied. In DSDL3, the
principles of aggregation and reasoning by cases hold unrestrictively.

‘DD’ is a principle of chaining for obligations. DSDL3 supports a weaker
version known as ‘cut’: from ©(ψ/ϕ) and ©(ξ/ϕ ∧ ψ) infer ©(ξ/ϕ).

Proof. For Equivalence, this is routine check.

The reason why Consistent And holds can be seen as follows. Suppose both
©C(ψ/ϕ) and ©C(ψ′/ϕ) hold at w. Then, ψM , ψ′

M ∈ Choice(C), and both

ψM and ψ′
M

dominate any S ∈ Choice(C) \ ϕM . By the fact that M,w |=
E(ψ∧ψ′) we have that ψM = ψ′

M
, as Choice(C) is a partition. Hence ψ∧ψ′M ∈

Choice(C), and ψ ∧ ψ′M dominates any S ∈ Choice(C) \ ϕM . This shows that
©C(ψ ∧ ψ′/ϕ) holds at w too.

The picture below shows why Consistent OR is valid. Here the convention
is that worlds on a lower level dominates all those on an upper level. To avoid
cluster, we list the propositions that are made true, and omit those made false.

@
@@j

K1 K2 ...

S1

...
Sk ψ ψ
Sk+1

?

6

ϕ,ϕ′

Put C = {j}. ϕ and ϕ′ are true everywhere from S1 downwards up to Sk. ψ is
true at Sk only.©C(ψ/ϕ) and©C(ψ/ϕ′) hold because Sk = ψM dominates any
of S1, ..., and Sk−1. In Sk+1, neither ϕ nor ϕ′ is true. Therefore, when evaluating
©C(ψ/ϕ ∨ ϕ′), the choice set does not change, and thus ©C(ψ/ϕ ∨ ϕ′) also
holds. That this holds in general is a consequence of the truth of E(¬ϕ∧¬ϕ′)∧
E[C]¬ϕ ∧ E[C]¬ϕ′.

For DD, the argument is similar. The diagram below should provide enough
information to convince the reader of the soundness of the inference pattern.
It says that, given transitivity of �j , if ψ dominates the ϕ-zone, and ξ in turn
dominates the ψ-zone, then ξ dominates the ϕ-zone.

9 The qualifier ‘strong’ is commonly used to avoid any confusion with the principle
obtained by replacing Aϕ with ϕ. This other principle is usually referred to as simply
“Factual Detachment”. For a good discussion of SFD, see Prakken and Sergot [14].
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?

6

ϕ

?

6

ψ

?

6ξ

The fact that ξM is in the choice set follows from the assumption that©C(ξ/ψ)
holds.

The validity of SFD is straightforward. If Aϕ holds, then Choice(C) \ϕM =
Choice(C). ut

4.3 Monotonic obligation

In this section we generalize the account described in the previous sections. The
idea is to incorporate a monotonicity condition in the semantics to secure the
validity of such laws as (WC) and (CTD), which we think are desirable. For the
unconditional operator, we adopt the following.

Definition 10 (Monotonic Obligations).

M,w |=©↑Cϕ iff i)∃X ⊆ ϕM such that X ∈ Choice(C) and
ii)X dominates each K 6= X with K ∈ Choice(C)

Definition 10 is much alike the evaluation rule for in©C in Definition 8. The
former is obtained from the latter, by changing “=” into “⊆” in clause i). Thus,
it is no longer required that exactly the set of worlds where ϕ is true is amongst
those the agent can choose. It could be that he or she can choose a subset of
them only.

With CTD a similar stance can be taken. But care must be taken in the
formulation of the zoom-in operation appearing in clause ii) of Definition 9. The
definition looks a bit more involved, but it has similar effects.

Definition 11 (Monotonic CTD obligation).

M,w |=©↑C(ψ/ϕ) iff i) ∃X ⊆ ψM with X ∈ Choice(C) and

ii) X dominates each K 6= X ∈ Choice(C) \
⋃

Y ∈Choice(C) Y ⊆ ϕM

Below we argue that such refinements are also needed to deal with some of
the typical CTDs scenarios discussed in the deontic logic literature.

Requirements There are known requirements that any satisfactory account of
CTDs is expected to meet. These are discussed in depth by Carmo and Jones
[5]. For present purposes, suffice it to consider the two basic ones. These are:

– the logical representation of the premises set should be consistent;
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– the logical formulas used to represent the scenario should be independent
from each other.

It is not difficult see that, if the above two definitions are used, then these two
most basic requirements are met for an important class of CTDs scenarios, like
the Chisholm scenario and the dog-and-sign scenario, among others. These two
are structurally identical. Below we focus on the former.

Chisholm scenario. The premises set is {©↑Ch,©
↑
C(t/h),©↑C(¬t/¬h),¬h}, where

h and t are for helping and telling, respectively. To show that the set is consis-
tent amounts to showing that it is satisfiable in a model. Table 6 gives one such
model.

@
@@j
i

K1

S1 w1 : ¬h, t
0.25

S2 w2 : ¬h,¬t
0.5

S3 w3 : h,¬t
0.75

S4 w4 : h, t
1

Table 6. Consistency of the Chisholm set
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All the sentences are true at e.g. w2. ¬h holds there, and so does ©↑jh. For

S4 ⊂ hM , and S4 dominates the other elements in the choice set of j. For the
other sentences, the argument is similar.

The proof of independence is by showing that each formula can be falsified
in a model that satisfies the other three formulae. For the propositional formula
¬h, this is just a matter of changing the world at which all the sentences are
evaluated. For the normative sentences, this is just a matter of modifying the
ranking in a suitable way, like in a usual preference-based semantics. For instance,
table 7 makes ©↑jh false while making the other three formulae true at e.g. w2.

This demonstrates the independence of ©↑jh.

@
@@j
i

K1

S1 w1 : ¬h, t
0.75

S2 w2 : ¬h,¬t
1

S3 w3 : h,¬t
0.25

S4 w4 : h, t
0.5

Table 7. Independence of ©↑
jh

For the independence of ©↑j (t/h) and ©↑j (¬t/¬h), the argument is similar, and
left to the reader.

4.4 Obligations for someone else

The obligation operators in Definitions 7 and 9 can also be naturally generalized
to obligations for someone else by replacing the notion of dominance in their
interpretation with that of F -dominance of Definition [10].

Definition 12. Let M be a consequentialist model and w a state in its domain.
The interpretation of the formulas in Definitions 7 and 9 with respect to a tuple
‘M,w’ is as follows:

M,w |=©F
Cϕ iff i)ϕM ∈ Choice(C) and

ii)ϕM F-dominates each K 6= ϕM with K ∈ Choice(C)

M,w |=©F
C(ψ/ϕ) iff i) ψM ∈ Choice(C) and

ii) ψM F-dominates each K 6= ψM ∈ Choice(C) \ ϕM
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5 Back to the Example

Now we can revisit the left & right shoes game described in Example 1. First,
we show that CTD obligations can be used to encode in the syntax the second-
best decision for each player as specified by his own standard (selfishness, or
altruism). Next, we show that, if the players go for the second-best, then the
outcome of the game turns out to be the best one, according to their standard
again. Paradoxical as it may seem, the players would serve their principles better
by accepting to compromise them: the second-best is best.

Let p0, p1 and p2 denote the propositions that j concedes none, one and two
resources to i, respectively. Let q0, q1 and q2 denote the propositions that i con-
cedes none, one and two resources to j, respectively. Table 8 below recapitulates
the moves available to the players along with the associated utilities.

@
@@j
i

K0 K1 K2

2 1 0
S0 w0 : p0, q0 w1 : p0, q1 w2 : p0, q2

2 4 6

4 3 1
S1 w3 : p1, q0 w4 : p1, q1 w5 : p1, q2

1 3 4

6 4 2
S2 w6 : p2, q0 w7 : p2, q1 w8 : p2, q2

0 1 2

Table 8. Moves available with corresponding utilities

Selfishness

We first illustrate how selfishness on both sides leads the system to a suboptimal
outcome.

Let us start with j. We have pM0 = S0 = {w0, w1, w2}. As explained in
Example 3, S0 dominates S1 and S2. Therefore, according to Definition 8, the
obligation©jp0 holds; that is, from his own point of view j should concede noth-
ing. The same goes for i. We have qM0 = K0 = {w0, w3, w6}. As also explained in
Example 3, K0 dominates K1 and K2. Therefore, according to Definition 8, the
obligation ©iq0 holds too; that is, from his own point of view i should concede
nothing either.

However, if the players behave selfishly, and if i and j comply with ©iq0
and ©jp0, respectively, then the outcome of the game is w0. This is clearly
suboptimal, because in w0 each player gets 2 only.
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Now let us see what CTD obligations hold, starting with j. We have pM1 ∈
Choice({j})\pM0 = {S1, S2}. Furthermore, S1 dominates S2. Therefore, accord-
ing to Definition 9, the obligation ©j(p1/¬p0) holds. Intuitively, the obligation
says that, if j concedes something, then (from his own point of view) he should
concede one only.

The same goes for i. On the one hand, qM1 ∈ Choice({i}) \ qM0 = {K1,K2}.
On the other hand, K1 dominates K2. So, the obligation©i(q1/¬q0) also holds.
Intuitively, the obligation says that, if i concedes something, then (from his own
point of view) he should concede one only.

Hence, we can see that each CTD obligation, in combination with a primary
obligation, encodes in the syntax the second-best choice available to each player.
But we can also see that, if the players go for it − in other words, if they accept
to compromise their principles − then the outcome of the game is w4, which
turns out to be the optimal one. By choosing w4, they both get the maximum,
namely 3.

Altruism

A similar point can be made about altruistic behavior.
We have ©i

jp2 because pM2 = S2 ∈ Choice({j}) and (as explained in Ex-

ample 4) S2 {i}-dominates S1 and S0. And we have ©j
i q2 because qM2 = K2 ∈

Choice({i}) and (as also explained in Example 4) K2 {j}-dominates K1 and
K0. Hence, if each player is motivated by the interests of the other, then they
each should concede 2. However, if both behave altruistically, the outcome of the
game is w8, and thus it is sub-optimal. They get 2 only.

Now let us see what CTD obligations hold. First,©i
j(p1/¬p2) holds, because

pM1 = S1 ∈ Choice({j})\pM2 = {S0, S1} and (as easily verified) S1 {i}-dominates
S0. Next, ©j

i (q1/¬q2) holds, because qM1 = K1 ∈ Choice({i}) \ qM2 = {K0,K1}
and (as easily verified too) K1 {j}-dominates K0. Again, these CTD obligations
encode in the syntax the second-best choices available to the players. The first
obligation says that, if j does not concede two resources, then (from i’s point of
view) he should concede one resource. The second obligation says that, if i does
not concede two resources, then (from j’s point of view) he should concede one
resource.

Like in the selfish case, if the players go for the second-best, and accept
to relax their altruistic principles, then the outcome of the game becomes the
optimal one, namely w4.

6 Conclusion

In this paper we have maintained that assigning a game-theoretical semantics to
contrary-to-duty obligations considerably enriches the span of possible applica-
tions of their logics. Specifically, we have seen how reasoning on contrary-to-duty
obligations can be seen as reasoning on second best choices in interaction. This
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seems to make perfect sense when players are confronted with coordination prob-
lems when fully individualistic or fully altruistic solutions fail. In these scenarios
intermediate concepts should be sought, and contrary-to-duty logics offer a flex-
ible framework to carry it out. Our approach is fully in line with the utilitarian
treatment of deontic operators as logical notions that can be used to reason
about rational choices in interaction. The finding that the second-best is some-
times better than the best departs from the conventional wisdom. In this respect,
our approach is somewhat orthogonal with the usual treatments of CTDs. We
believe such a finding is a fruitful avenue for future research.

Several directions for future work can be taken. Above all, an axiomatization
of the logic would be desirable. Techniques have been developed in order to
resolve the axiomatization problem of dyadic deontic logic [17, 6, 13]. It remains
to investigate whether such techniques can be adapted to a game-theoretical
setting such as the one proposed here.

Afterword

Thanks to Marek Sergot for his leading role in the DEON community. We ac-
knowledge his influence on our work in general, and this paper in particular.
His work with Henry Prakken on contrary-to-duty obligations in defeasible de-
ontic logic determined the PhD research questions of the third author in the
mid nineties. Marek’s interest in contrary-to-duty obligations goes back to his
joint work with Andrew Jones, since from the first DEON workshop in 1991 they
have emphasized the distinction between what ought to be the case and what is
the case, or as they call it, between the actual and the ideal. This has become
the standard criterion for deciding whether deontic logic can or should be used
in computer science. The present paper comments on this dogma by raising the
fundamental question what it means in a game-theoretic context to be sub-ideal.
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