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Preference Semantics for Hansson-type
Dyadic Deontic Logic:
A Survey of Results

Xavier Parent

Abstract. This chapter discusses the Hansson-type prefer-
ence semantics for dyadic deontic logics. In that framework
the conditional obligation operator is interpreted in terms
of best antecedent-worlds. I survey results pertaining to the
meta-theory of such logics, focusing on axiomatization issues.
The goal is to provide a “roadmap” of the different systems
that can be obtained, depending on the special properties
envisaged for the betterness relation, and depending on how
the notion of “best” is understood (optimality vs. maximal-
ity, stringent vs. liberal maximization). In addition, the sys-
tems’ decidability and automated theorem-proving for them
are discussed, and variant truth-conditions for the condi-
tional obligation operator are reviewed.
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1 Introduction

Beginning with work by Danielsson [1968] and Hansson [1969], so-called
Dyadic Deontic Logic (hereinafter referred to as “DDL”) aims at pro-
viding a formal analysis of conditional obligation sentences within a
preference-based semantics. The language of DDL employs a dyadic (or
conditional) obligation operator©(−/−), where©(B/A) is read as “It is
obligatory that B, given that A”. This construct is interpreted using a
preference relation, which orders all the possible worlds in terms of com-
parative goodness or betterness. In that framework ©(B/A) is taken to
hold, whenever all the best A-worlds are B-worlds.
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DDL is a natural generalization of Monadic Deontic Logic (here-
inafter referred to as “MDL”). The semantics of this one uses a binary
classification of possible worlds into good/bad. For DDL, this binary
classification is relaxed to allow for grades of ideality between these two
extremes.1 This leads to the use of a conditional obligation operator
that is primitive rather than being defined in terms of the standard
(monadic) obligation operator and some other familiar constructs like
material implication or strict implication.

DDL uses the possible world semantics in novel ways with a view
to solving issues related to two different kinds of deontic conditionals:

Contrary-to-duty conditionals Since the publication of Chisholm
[1963], deontic logicians have struggled with what has become
known as the “contrary-to-duty” (CTD) problem. It is the problem
of giving a formal treatment to those obligations−called “contrary-
to-duty” by Chisholm−which come into force when some other
obligation is violated. DDL was initially developed in order to
handle this first type of deontic conditional. According to Hans-
son and others, like van Fraassen [1972] and Lewis [1973; 1974],
the problems raised by CTDs call for the use of an ordering on
possible worlds, in terms of preference or relative goodness, and
MDL fails in as much as its semantics does not allow for grades
of ideality.

Defeasible deontic conditionals Independently of the above, the use
of a preference relation has also been advocated in relation to
the analysis of the notion of defeasible conditional obligation. In
particular, Alchourrón [1993] argues that preferential models pro-
vide a better treatment of this notion than the usual Kripke-style
models do. Indeed, a defeasible conditional obligation is one that
leaves room for exceptions. Under a preference-based approach,
we no longer have the deontic analogue of two laws, the failure of
which constitutes the main formal feature expected of defeasible
conditionals. One is “deontic” modus-ponens, also known as Fac-
tual Detachment (FD): ©(B/A) and A imply ©B. The other is

1A remark on my choice of name is in order. MDL is more commonly known
as “Standard Deontic Logic” (SDL), and DDL as “Dyadic Standard Deontic Logic”
(DSDL). Both names appear in Hansson’s seminal paper. Throughout this chapter
I will not use the label SDL, because it tends to carry the connotation that the
framework in question is still a recognized “standard”. As Hilpinen and McNamara
[2013, p. 38] point out, to call SDL a standard is a misnomer. MDL refers to a family
of systems, which were called D, DS4, DM and DS5 by Hanson [1965]. (Other labels
have been used in the literature.)
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the law of Strengthening of the Antecedent (SA): ©(B/A) entails
©(B/A ∧ C).

There is an extensive literature on the treatment of these notions
within a preference-based framework. Regarding contrary-to-duties, the
reader may wish to consult [van Fraassen, 1972; Lewis, 1973; Tomberlin,
1981; Loewer and Belzer, 1983; Kratzer, 1991; Prakken and Sergot, 1997;
van der Torre and Tan, 1999; Hilpinen and McNamara, 2013]. Concern-
ing defeasible conditional obligations, the reader is referred to [Makin-
son, 1993; Boutilier, 1994; Alchourrón, 1995; Asher and Bonevac, 1997;
van der Torre and Tan, 1997; Horty, 2014]. It is not the purpose of this
chapter to evaluate such treatments, nor is it to discuss the relation-
ship between dyadic deontic logic and frameworks developed in other
closely related areas, like revealed preference theory (as introduced by
the economist Samuelson), the logic of conditionals (as developed in the
1970’s following Stalnaker and Lewis), or the theories of nonmonotonic
inference operations (as constructed in the 1980’s in the context of logics
for artificial intelligence). All these frameworks share the idea of using a
semantics based on a notion of minimality under a preference relation,
or equivalently, a notion of maximality under its converse. For a good
discussion of the interplay between these areas, the reader is referred to
[Makinson, 1993].2

The aim of this chapter is to present a survey of recent results per-
taining to the meta-theory of DDL. Since the publication of Hansson’s
seminal paper, substantial contributions have been made to enhance
our understanding of the meta-theory of DDL, starting with work by
Spohn [1975], and continuing with work by Åqvist [1987; 1993; 2002],
Hansen [1999], Goble [2015; 2019] and myself [Parent, 2008; Parent,
2010; Parent, 2014; Parent, 2015]. However, there is still no systematic
survey of the field. The present chapter aims at filling in this gap. The
goal is to provide a “roadmap” of the different systems that can be
obtained, based on two types of considerations or variations.

The first type of consideration is familiar from modal logic. Different
systems can be obtained by varying the conditions on the preference rela-
tion. In general the imposition of a condition has the effect of validating
a modal formula. In monadic modal logic, we have a clear picture of
the different systems that can be obtained depending on the properties
of the accessibility relation. In dyadic deontic logic, this picture is still
missing. Results in the literature have so far mostly concerned classes of

2Makinson does not discuss the connection with rational choice theory. This one
is examined by [Rott, 2001] among others.
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structures with strong conditions on the betterness relation. One such
condition is the property of transitivity, which has been called into ques-
tion by moral philosophers and economists.3 One would like to know
what happens when such a condition is relaxed. What Lewis [1973] calls
the limit assumption is another requirement that one would like to be
able to drop. Roughly speaking, it says that a set of possible worlds
should always have a best element. A number of deontic logicians ob-
jected to the limit assumption, Lewis [1973, p. 97-98] among them. It is
not widely known what happens when these properties are not assumed.

This brings into the forefront so-called correspondence theory, de-
voted to the systematic study of relations between classes of frames and
modal languages. Van Benthem [2001, §3.2] asks if, or to what extent,
such a theory can be developed for conditional logic. Such a study falls
outside the scope of the present chapter. But I hope the considerations
it offers can be used as a stepping stone towards the development of such
a theory.

The second type of consideration this chapter introduces concerns the
notion of “best”, in terms of which the truth conditions for ©(−/−) are
typically phrased. One can distinguish between two ways to understand
the notion of a world being best: it can be either optimal or maximal.
This distinction is well-known from rational choice theory where most
authors follow Herzberger [1973] in using the terms “stringent” vs. “lib-
eral” maximization for what (following Sen [1997]) I call optimality vs.
maximality. For some item x to qualify as an optimal element of X, it
must be at least as good as every member of X. For x to count as a
maximal element, no other element in X must be strictly better than
it. Thus, while the optimal elements are all equally good, the maximal
elements are either equally good or incomparable. Depending on what
notion of “best” is used, one gets different truth conditions for ©(−/−),
but also different forms of the limit assumption.

I remark in passing that there is some variation in terminology. For
instance, [Bossert and Suzumura, 2010] prefer the labels “maximal vs.
greatest” element rationalizability. On the other hand, the choice to
use “optimal” and “maximal” the way just described is not mine, but
Sen’s (see in particular [Sen, 1997, §5]). I have heard people swap the
two terms, and take optimal as meaning “not-dominated”, and maximal
as meaning “dominates-all-others”. (See, e.g., the definition of optimal
in [Horty, 2001, p. 72].) In the end, it does not matter which way we
speak, so long as we understand and agree on what we mean and do not

3Cf. [Sen, 1971] and [Temkin, 1987].
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allow the coexistence of two conflicting ways of speaking to engender
confusion. In this chapter I will stick to Sen’s terminology.

This investigation takes place in the conditional logic setting put
forth by Åqvist in a series of publications [Åqvist, 1987; Åqvist, 1993;
Åqvist, 2002] rather than in Hansson’s original setting. That one is stud-
ied axiomatically by Spohn [1975] and Goble [2019]. Readers should be
warned that there is far less standardization in preference semantics
than in the usual Kripke-style semantics for deontic logic, and more
room for variation. This is due to the fact that there are several fac-
tors that must be juggled all at once. Thus, even when sticking with
Åqvist’s approach, more semantical variations than the above two can
be made. For instance, under the Åqvist account the ranking is not
world-relative. However, as Makinson [1993] points out, one may want
to allow for the ranking to vary across possible worlds. This extra choice
(and some others) are studied axiomatically by Goble, who in his [2015]
pursues a similar project. It falls outside the scope of the present paper
to integrate his results. The present chapter is not, and does not pre-
tend to be, a comprehensive survey of Hanssonian approaches to dyadic
deontic logic, so much as a summary of certain results, mainly my own,
that would help the reader understand some important aspects of the
Hanssonian approach, but does not address the scope of that approach
from either a formal or philosophical point of view.

As part of motivating the formal moves to be developed next, I
briefly recall how the framework handles the standard CTD scenarios,
like Chisholm’s paradox.

Example 1.1. [Chisholm’s scenario] Consider the following set of sen-
tences, where h can be read as the fact that a certain man goes to the
assistance of his neighbors and t as the fact that he is telling them that
he is coming:

Γ = {©h,©(t/h),©(¬t/¬h),¬h}

©h expresses what is usually called a primary obligation. ©(¬t/¬h)
is its associated CTD obligation, and ©(t/h) is its associated ATD
(according-to-duty) obligation. Figure 1 describes a typical preference
model of Γ. Here the convention is that at each world a ∈ W , I list the
propositional letters that a satisfies, omitting those that it makes false.
The best overall world is the one where both h and t hold, and the worst
overall world is the one where t holds but h does not. In between one
sees two worlds, one with h but not t and the other with neither h nor t.
All the formulas in Γ are satisfied in a3 and a4. This shows that the set
Γ is consistent. The primary obligation holds, because the best overall
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Figure 1: A typical model of Chisholm’s scenario

word satisfies h. The CTD obligation holds, because the best ¬h-world
satisfies ¬t. The ATD obligation holds, because the best h-world satis-
fies t. It is worth mentioning that this approach to the CTD scenarios
only works because neither (FD) nor (SA) are valid under this approach,
as the model of Figure 1 demonstrates.4

The layout of this chapter is as follows. In Section 2, the syntax and
the semantics are described. In Section 3, the relevant proof systems are
introduced. In Section 4, the determination results available at the time
of writing this chapter are reviewed. In Section 5, the decidability of the
theoremhood problem is established, and automated theorem-proving is
discussed. In Section 6 variant truth-conditions are reviewed. Section 7
concludes. Supplementary material is gathered in three appendices. In
particular, the proof of two new results is given.

2 Syntax and semantics

2.1 Syntax

Definition 2.1. The language L, or set of well-formed formulas (wffs),
is generated from a set P of propositional atoms by the following BNF:

A ::= p ∈ P | ¬A | A ∨A | �A | ©(A/A)

¬A is read as “not-A”, and A ∨B as “A or B”. �A is read as “A is
settled as true”, and ©(B/A) as “B is obligatory, given A”. A is called
the antecedent, and B the consequent.

The following derived connectives are introduced. P (B/A) (“B is
permitted, given A”) is short for ¬©(¬B/A),©A (“A is unconditionally
obligatory”) and PA (“A is unconditionally permitted”) are short for
©(A/>) and P (A/>), respectively. 3A is short for ¬�¬A. Other
Boolean connectives are defined as usual.

4(FD) yields©¬t. This “contradicts” the fact that the best overall world satisfies
t, so that©t holds. (SA) warrants the move from©t to©(t/¬h). This “contradicts”
the third formula in Γ.
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Åqvist’s language goes beyond Hansson’s by including alethic modal-
ities, mixed formulas (in which deontic formulas are combined with
Boolean ones) and iterated deontic modalities.

2.2 Semantics–basic setting

Definition 2.2 (Preference model). A preference model is a structure

M = (W,�, v)

in which
(i) W 6= ∅ (W is a non-empty set of “possible worlds”);
(ii) �⊆W ×W (intuitively, � is a betterness or comparative goodness

relation; “a � b” can be read as “world a is at least as good as world
b”);

(iii) v : P → P(W ) (v is an assignment, which associates a set of
possible worlds to each propositional atom p).

� denotes the strict relation induced by �, defined as its “strength-
ened converse complement” and obtained by putting a � b whenever
a � b and b 6� a. a � b may be read as “a is strictly better than b”. Note
that � is by definition irreflexive (i.e., for all a, a 6� a). Two worlds a
and b are said to be equally good or indifferent, a ≡ b, whenever a � b
and b � a. They are said to be incomparable, a||b, whenever a 6� b and
b 6� a.5

Definition 2.3 (Satisfaction relation). Given a model M = (W,�, v)
and a world a ∈W , the satisfaction relation M,a � A (read as “world a
satisfies A in model M”) is defined by induction on the structure of A.
The clauses are as usual for the Boolean connectives and 2:

M,a � p iff (if and only if) a ∈ v(p)
M,a � ¬A iff M,a 6� A
M, a � A ∨B iff M,a � A or M,a � B

M, a � 2A iff ∀b M, b � A

The clause for the dyadic obligation operator is:

M,a �©(B/A) iff best�(‖A‖M ) ⊆ ‖B‖M
5The betterness relation �may be defined in terms of some more basic ingredients

in the semantics. (See, for instance, [Kratzer, 2012] and [Prakken and Sergot, 1997]).
However, most articles in the field do not consider this course, and neither will I in
this chapter. Kratzer’s theory is discussed in more detail in the chapter in this volume
“Deontic logic and natural language” by F. Cariani.
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As usual ‖A‖M denotes the truth-set of A (i.e., the set of worlds at
which A holds). The notation best�(‖A‖M ) is a shorthand for the set
of best (according to �) worlds in which A is true. Intuitively, ©(B/A)
holds at a whenever all the best A-worlds are B-worlds. Note that,
by definition of P (−/−), M,a � P (B/A) iff best�(‖A‖M ) ∩ ‖B‖M 6=
∅. Intuitively: P (B/A) holds whenever at least one best A-world is a
B-world. I will postpone the definition of best�(‖A‖M ) until the next
section. When the context allows, I will drop the symbol M and just
write ‖A‖ and a |= A.

The notions of semantic consequence, validity and satisfiability are
defined as usual.

2.3 Two notions of “best”

As mentioned in Section 1, there are two ways to formalize the notion
of best antecedent-worlds: one may do it using the notion of optimality,
or the notion of maximality.6 They are not clearly distinguished in the
deontic logic literature even though their differences can be significant.
They may be defined thus:

opt�(‖A‖M ) = {b ∈ ‖A‖M | ∀c (c � A→ b � c)}
max�(‖A‖M ) = {b ∈ ‖A‖M | ∀c ((c � A & c � b)→ b � c)}

Maximality can equivalently be defined in terms of �:

max�(‖A‖M ) = {b ∈ ‖A‖M | @c (c � A & c � b)}

It is easy to see that opt�(‖A‖M ) ⊆ max�(‖A‖M ) although the converse
inclusion may fail. Typically, it will fail if there are “gaps” in the ranking.

Example 2.4 (Gaps). Define M = (W,�, v), with W = {a, b}, v(p) =
W , and �= {(a, a), (b, b)}. We have a||b. max�(‖p‖M ) = {a, b} but
opt�(‖p‖M ) = ∅.

Totalness of � (“for all a, b ∈ W,a � b or b � a”) may be shown to
be a sufficient condition for the two notions of “best” to coincide. We
have already seen that opt�(‖A‖M ) ⊆ max�(‖A‖M ). Now,

Observation 2.5. max�(‖A‖M ) = opt�(‖A‖M ) if � is total.

Proof. The right-in-left inclusion holds by definition. The left-in-right
inclusion calls upon totalness. To see why, assume � is total, and let

6As mentioned, I adopt this terminology from Sen [1997].
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a ∈ max�(‖A‖M ). Consider b ∈ ‖A‖M . By totalness, a � b or b � a. In
the second case, a � b, since a ∈ max�(‖A‖M ). Either way, a � b, and
so a ∈ opt�(‖A‖M ).

Thus, one gets two different pairs of evaluation rules depending on
which of the following two equations is adopted:

best�(‖A‖M ) = max�(‖A‖M ) (max rule)
best�(‖A‖M ) = opt�(‖A‖M ) (opt rule)

Both definitions can be found in the literature.7 From now onward, I
will refer to the first equation (resp. second equation) as the max rule
(resp. opt rule). From Observation 2.6, it immediately follows that, in
a given model M with � total, the same deontic formulas are true at a
given world whatever rule is used.

This chapter focuses on the above two definitions of “best”. As a
matter of fact, variant definitions have been proposed. The purpose
of these variations is often to remedy the emptiness of the set of best
worlds when the betterness relation admits cycles, like in Figure 2. Con-
dorcet’s well-known voting paradox [Sen, 1969] is often used to show the
plausibility of this kind of situations.

b

a

c

d

Figure 2: A top cycle. An arrow from a to b represents a ≥ b. No arrow
from b to a means b 6≥ a.

Hansson [2009] suggests maximizing with respect to the transitive
closure �? rather than � itself.8 Recall that a �? b iff there are c1, ..., cn

7For instance, Hansson [1969], Makinson [1993, §7.1], Schlechta [1995], Prakken
and Sergot [1997], van der Torre and Tan [1997, p. 95], Horty [2001, p. 72] and
Stolpe [2020] use the max rule. In contrast, Spohn [1975], Åqvist [1987; 2002], Fe-
hige [1994, p. 43], Alchourrón [1995, p. 76], McNamara [1995], Hansen [2005, §6] work
with the opt rule. Neither Goldman [1977], nor Jackson [1985], nor Hilpinen [2001,
§8.5] specifies what notion of “best” is meant. (The last one uses “best” and “deon-
tically optimal” interchangeably, but leaves optimality undefined.)

8There is room for variation here. Hansson considers four alternative construc-
tions, and finally settles on that one.
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such that a � c1 � ... � cn � b. I will call this variant the “quasi-
maximality” (quasi-max, for short) rule:

best�(‖A‖M ) = max�?(‖A‖M ) (quasi-max rule)

where

max�?(‖A‖M ) = {b ∈ ‖A‖M | ∀c ((c � A & c �? b)→ b �? c)}

It is worth noticing that, if � is transitive, then �=�?, so that the
quasi-max rule coincides with the original max rule:

Observation 2.6. max�(‖A‖M ) = max�?(‖A‖M ) if � is transitive.

A thorough study of such alternative definitions must be postponed
to another occasion. I will report a completeness result for the interpre-
tation under the quasi-max rule in Section 4.3.

2.4 Properties of �

The properties usually envisaged for � are reflexivity, transitivity, total-
ness, and the so-called limit assumption. The first three may be given
the form:

• reflexivity: for all a ∈W,a � a;
• transitivity: for all a, b, c ∈W , if a � b and b � c, then a � c;
• totalness: for all a, b ∈W,a � b or b � a.

The exact formulation of the limit assumption varies among authors.
It can be given two basic forms:

Limitedness
If ‖A‖ 6= ∅ then best�(‖A‖) 6= ∅
Smoothness (or stopperedness)
If a � A, then: either a ∈ best�(‖A‖) or

∃b s.t. b � a & b ∈ best�(‖A‖)

The name “limitedness” is from Åqvist [1987; 2002], “smoothness” from
Kraus & al. [1990], and “stopperedness” from Makinson [1989]. Each
of limitedness and smoothness may be specified further by identifying
best�(X) with either max�(X) or opt�(X). A betterness relation � will
be called “opt-limited” or “max-limited” depending on whether limit-
edness holds with respect to opt� or max�. Similarly, it will be called
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“opt-smooth” or “max-smooth” depending on whether smoothness holds
with respect to opt� or max�.9

This gives us four versions of the limit assumption. With the strong
assumptions of transitivity and totalness, these different forms of the
limit assumption coincide. However, with weaker constraints on �, they
may well diverge.

Theorem 2.7.
(a) (i) opt-limitedness implies max-limitedness;

(ii) given totalness of �, max-limitedness implies opt-limitedness;
(b) (i) opt-smoothness implies max-smoothness;

(ii) given totalness of �, max-smoothness implies opt-smoothness.

Proof. This follows at once from the definitions involved and Observa-
tion 2.6.

Theorem 2.8.
(a) (i) max-smoothness implies max-limitedness;

(ii) given transitivity and totalness of �, max-limitedness implies
max-smoothness;

(b) (i) opt-smoothness implies opt-limitedness;
(ii) given transitivity of �, opt-limitedness implies opt-smoothness.

Proof. See [Parent, 2014, Proposition 2].

Figure 3 represents the relationships just established in an Implica-
tion Diagram with the direction of the arrow representing that of impli-
cation. The implication relations shown in the picture on the left-hand

7
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Figure 1: Three sub-floats.

opt-limited opt-smooth

max-limited max-smooth

opt-limited opt-smooth

max-limited max-smooth

totalness

transitivity

totalness
transitivity

totalness

Figure 2: Forms of the limit assumption, and their relationships

Usually the limit assumption is phrased using the same notion of best as in the evaluation
rules for the deontic modalities. This has become a fairly common practice, and myself I will
follow it. However, there is no obstacle that can stop us from combining different notions of
best, if needs be.

One often takes the point of the limit assumption to rule out infinite sequences of strictly
better worlds, hence the name.3 It is natural to ask if, amongst the four conditions just
discussed, one implements this requirement better than the others. This question has no
easy answer, and I will confine myself with a few remarks. In the absence of totalness,
max-limitedness does not rule out infinitely ascending chains, and so it does not seem to be
very well suited for the purpose at hand. Put M = (W,⌫,V ) with W = {xi : i < w}[{x},
x ⌫ x, x j ⌫ xi iff i  j and x||xi for all i < w . Assume all the words in W are ‘duplicates’
of each other, in the sense that they satisfy exactly the same formulae. Then, ⌫ is max-
limited, because max⌫(kAk) = {x}, for all wff A. We are left with either opt-limitedness,
or opt-smoothness, or max-smoothness. Each condition seems to be a bit strange in itself.
It does more than just ruling out infinitely ascending chains, but also excludes models that
otherwise seem quite reasonable. Indeed, opt-limitedness rules out the following model:
M = (W,⌫,V ) with W = {x,y}, x||y (reflexivity of the ⌫-type is left implicit), and V (p) =
W . In the absence of transitivity, max-smoothness and opt-smoothness exclude the following
model: M = (W,⌫,V ) with W = {x,y,z}, x � y � z and x||z (reflexivity of the ⌫-type is left
implicit). Transitivity is not satisfied, because x ⌫ y and y ⌫ z, whilst x 6⌫ y. Put V (p) = W .
We have max⌫(kpk)) = {x}. Max-limitedness is not satisfied (witness: z), and neither is
opt-smoothness, by Proposition ?? (b.i).

3 However, not all the authors have used it that way. For instance, for Hansson it seems to have been more
a concern for non-emptiness, which is essential to validate the principle (given as ??, Subsec. ?? below) that
ought implies permitted, for consistent, or possible, antecedents.

(a) Implications always true.
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Figure 1: Three sub-floats.
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Figure 2: Forms of the limit assumption, and their relationships

Usually the limit assumption is phrased using the same notion of best as in the evaluation
rules for the deontic modalities. This has become a fairly common practice, and myself I will
follow it. However, there is no obstacle that can stop us from combining different notions of
best, if needs be.

One often takes the point of the limit assumption to rule out infinite sequences of strictly
better worlds, hence the name.3 It is natural to ask if, amongst the four conditions just
discussed, one implements this requirement better than the others. This question has no
easy answer, and I will confine myself with a few remarks. In the absence of totalness,
max-limitedness does not rule out infinitely ascending chains, and so it does not seem to be
very well suited for the purpose at hand. Put M = (W,⌫,V ) with W = {xi : i < w}[{x},
x ⌫ x, x j ⌫ xi iff i  j and x||xi for all i < w . Assume all the words in W are ‘duplicates’
of each other, in the sense that they satisfy exactly the same formulae. Then, ⌫ is max-
limited, because max⌫(kAk) = {x}, for all wff A. We are left with either opt-limitedness,
or opt-smoothness, or max-smoothness. Each condition seems to be a bit strange in itself.
It does more than just ruling out infinitely ascending chains, but also excludes models that
otherwise seem quite reasonable. Indeed, opt-limitedness rules out the following model:
M = (W,⌫,V ) with W = {x,y}, x||y (reflexivity of the ⌫-type is left implicit), and V (p) =
W . In the absence of transitivity, max-smoothness and opt-smoothness exclude the following
model: M = (W,⌫,V ) with W = {x,y,z}, x � y � z and x||z (reflexivity of the ⌫-type is left
implicit). Transitivity is not satisfied, because x ⌫ y and y ⌫ z, whilst x 6⌫ y. Put V (p) = W .
We have max⌫(kpk)) = {x}. Max-limitedness is not satisfied (witness: z), and neither is
opt-smoothness, by Proposition ?? (b.i).

3 However, not all the authors have used it that way. For instance, for Hansson it seems to have been more
a concern for non-emptiness, which is essential to validate the principle (given as ??, Subsec. ?? below) that
ought implies permitted, for consistent, or possible, antecedents.

(b) Converse implications.

Figure 3: Forms of the limit assumption, and their relationships.

9Hansson [1969] and Prakken and Sergot [1997] use max-limitedness, while Lewis
[1974, p. 6], Spohn [1975], Åqvist [1987; 2002], Fehige [1994, p. 44], Alchourrón [1995,
p. 84], McNamara [1995] and Hansen [2005, §6] use opt-limitedness, and Makin-
son [1993] and Schlechta [1995] max-smoothness. I am not aware of any authors
who have considered opt-smoothness explicitly.
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side hold without restriction. By contrast, those shown on the right-
hand side hold under the hypothesis that � meets the property (or pair
of properties) displayed as labeled.

In this chapter I only want to understand how the choice of a given
version of the limit assumption affects the logic. The philosophical as-
pects of the limit assumption will not be discussed here−the reader
should consult [Lewis, 1973; Fehige, 1994; McNamara, 1995; Hilpinen
and McNamara, 2013]. Note that in linguistics the limit assumption has
been given even more variant forms. (See, e.g., the discussion in [Kauf-
mann, 2017].)

2.5 Where the opt rule vs. the max rule makes a differ-
ence

In this section, I give two examples of a valid formula for which the
choice between the opt rule and the max rule makes a difference.

First, there is the example of the principle of rational monotony
[Lehmann and Magidor, 1992], also called CV by Lewis [1973]. This is
the principle

(P (B/A) ∧©(C/A))→©(C/A ∧B) (RM)

(RM) expresses a restricted principle of strengthening of the antecedent:
one can strengthen an antecedent when the added condition B is per-
mitted under the main condition A. Hence, doing the permitted has no
effect on our other obligations.

Observation 2.9. Under the opt rule, (RM) is valid if � is required to
be transitive. Under the max rule, (RM) is valid if � is required to be
both transitive and total.

Proof. Assume that (i) opt�(‖A‖) ⊆ ‖C‖, (ii) opt�(‖A‖) ∩ ‖B‖ 6= ∅,
and (iii) opt�(‖A ∧ B‖) 6⊆ ‖C‖. From (iii), there is some a such that
a ∈ opt�(‖A∧B‖) and a 6|= C. From (i), a 6∈ opt�(‖A‖), because a 6|= C.
But a |= A. So there is some b |= A with a 6� b. From (ii), there is also
some c such that c ∈ opt�(‖A‖) and c |= B. Since c |= A ∧ B, a � c.
Also, c � b, since c ∈ opt�(‖A‖). By transitivity, a � b. Contradiction.
Hence, under the opt rule, (RM) is valid if � is transitive.

For the max rule, it suffices to invoke the above along with Obser-
vation 2.6.

While under the opt rule transitivity is sufficient for the validity of
law (RM), by contrast under the max rule it is not sufficient.
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Observation 2.10. There is a preference model M = (W,�, v), in
which � is transitive, such that (RM) fails in M under the max rule.

Proof. Put M = (W,�, v), with W = {a, b, c}, �= {(a, b)} and v(p) =
W , v(q) = {b, c} and v(r) = {a, c}. The model is depicted in Fig-
ure 4, where � is (vacuously) transitive. We have max�(‖p‖) = {a, c},
max�(‖p ∧ q‖) = {b, c}, ‖q‖ = {b, c} and ‖r‖ = {a, c}. Under the max
rule, (RM) fails, since ©(r/p) and P (q/p) hold while ©(r/p ∧ q) does
not (witness: b).

•

•

•
p, r

p, q

p, q, r

a

b

c

Figure 4: A countermodel to (RM)

What I say here about (RM) applies analogously to the following
formula, named after Spohn [1975], who used it in his axiomatization of
Hansson’s system DSDL3:

(P (B/A) ∧©(B → C/A))→©(C/A ∧B) (Sp)

We will see that (Sp) and (RM) are equivalent.10 Spohn [1975, p. 247]
himself argues that the assumption of totalness is iddle. He can do so
only because he uses the opt rule instead of the max rule.

Here is my second example of a validity for which the choice between
the opt rule and the max rule makes a difference:

P (A/A ∨B) ∧ P (B/B ∨ C)→ P (A/A ∨ C) (�-trans)

(�-trans) expresses a principle of transitivity for a notion of weak pref-
erence over formulas given by A � B =def P (A/A ∨ B).11 This says
that A is ranked as at least as high as B iff it is permitted that A on
the condition that either A or B.

Observation 2.11. Under the opt rule, (�-trans) is valid if � is re-
quired to be transitive. Under the max rule, (�-trans) is valid if � is
required to be both transitive and total.

10Cf. Theorem 3.3 in Section 3.1.
11Cf. [Lewis, 1973, p. 54].
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Proof. Assume that (i) opt�(‖A ∨B‖) ∩ ‖A‖ 6= ∅, (ii) opt�(‖B ∨C‖) ∩
‖B‖ 6= ∅, and (iii) opt�(‖A ∨ C‖) ∩ ‖A‖ = ∅. From (i), there is some
a such that a ∈ opt�(‖A ∨ B‖) and a |= A. From (ii), there is some b
such that b ∈ opt�(‖B∨C‖) and b |= B. From (iii), a 6∈ opt�(‖A∨C‖).
Since a |= A ∨ C, there is some c such that c |= A ∨ C and a 6� c. Since
a ∈ opt�(‖A ∨ B‖) and a 6� c, c 6|= A ∨ B, and so c 6|= A and c 6|= B.
Hence c |= C, and so c |= B ∨ C. Thus, b � c. By transitivity of �,
a 6� b. On the other hand, since a ∈ opt�(‖A ∨ B‖) and b |= A ∨ B,
a � b. Contradiction.

For the max rule, it suffices to invoke the above along with Obser-
vation 2.6.

While under the opt rule transitivity is sufficient for (�-trans), under
the max rule it is not:

Observation 2.12. There is a preference model M = (W,�, v), with �
transitive, such that (�-trans) fails in M under the max rule.

Proof. Put M = (W,�, v), with W = {a, b, c}, �= {(a, b)} and v(p) =
{b}, v(q) = {b, c} and v(r) = {a}. This is shown in Figure 5. We have
max�(‖p ∨ q‖) = {b, c}, max�(‖q ∨ r‖) = {a, c}, max�(‖p ∨ r‖) = {a},
‖p‖ = {b}, ‖q‖ = {b, c} and ‖r‖ = {a}.

a
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<latexit sha1_base64="KbEQZRKFpGhMDkIzgHArqMfcI/o=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeyx4MVjC/YD2lA220m7drOJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNY3ptpgn5ER5KHnFFjrebjoFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT1vyMyyQ1KNnyozAVxMRkfjUZcoXMiKkFyhS3uxI2pooyY7Mp2RC81ZPXoX1V9Sw3ryv1Wh5HEc7gHC7Bgxuowx00oAUMEJ7hFd6cB+fFeXc+lq0FJ585hT9yPn8A2J2M6w==</latexit><latexit sha1_base64="KbEQZRKFpGhMDkIzgHArqMfcI/o=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeyx4MVjC/YD2lA220m7drOJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNY3ptpgn5ER5KHnFFjrebjoFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT1vyMyyQ1KNnyozAVxMRkfjUZcoXMiKkFyhS3uxI2pooyY7Mp2RC81ZPXoX1V9Sw3ryv1Wh5HEc7gHC7Bgxuowx00oAUMEJ7hFd6cB+fFeXc+lq0FJ585hT9yPn8A2J2M6w==</latexit><latexit sha1_base64="KbEQZRKFpGhMDkIzgHArqMfcI/o=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeyx4MVjC/YD2lA220m7drOJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNY3ptpgn5ER5KHnFFjrebjoFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT1vyMyyQ1KNnyozAVxMRkfjUZcoXMiKkFyhS3uxI2pooyY7Mp2RC81ZPXoX1V9Sw3ryv1Wh5HEc7gHC7Bgxuowx00oAUMEJ7hFd6cB+fFeXc+lq0FJ585hT9yPn8A2J2M6w==</latexit><latexit sha1_base64="KbEQZRKFpGhMDkIzgHArqMfcI/o=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeyx4MVjC/YD2lA220m7drOJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNY3ptpgn5ER5KHnFFjrebjoFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT1vyMyyQ1KNnyozAVxMRkfjUZcoXMiKkFyhS3uxI2pooyY7Mp2RC81ZPXoX1V9Sw3ryv1Wh5HEc7gHC7Bgxuowx00oAUMEJ7hFd6cB+fFeXc+lq0FJ585hT9yPn8A2J2M6w==</latexit>

p, q
<latexit sha1_base64="m9D8b9+6jZjO6ONvK8wPti1yMr8=">AAAB63icbZDLSgMxFIZPvNZ6q7p0EyyCCykzIthlwY3LCvYC7VAyaaYNTTJjkhHK0Fdw40IRt76QO9/GTDsLbf0h8PGfc8g5f5gIbqznfaO19Y3Nre3STnl3b//gsHJ03DZxqilr0VjEuhsSwwRXrGW5FaybaEZkKFgnnNzm9c4T04bH6sFOExZIMlI84pTY3Eou8eOgUvVq3lx4FfwCqlCoOah89YcxTSVTlgpiTM/3EhtkRFtOBZuV+6lhCaETMmI9h4pIZoJsvusMnztniKNYu6csnru/JzIijZnK0HVKYsdmuZab/9V6qY3qQcZVklqm6OKjKBXYxjg/HA+5ZtSKqQNCNXe7YjommlDr4im7EPzlk1ehfVXzHd9fVxv1Io4SnMIZXIAPN9CAO2hCCyiM4Rle4Q1J9ILe0ceidQ0VMyfwR+jzB2YljcU=</latexit><latexit sha1_base64="m9D8b9+6jZjO6ONvK8wPti1yMr8=">AAAB63icbZDLSgMxFIZPvNZ6q7p0EyyCCykzIthlwY3LCvYC7VAyaaYNTTJjkhHK0Fdw40IRt76QO9/GTDsLbf0h8PGfc8g5f5gIbqznfaO19Y3Nre3STnl3b//gsHJ03DZxqilr0VjEuhsSwwRXrGW5FaybaEZkKFgnnNzm9c4T04bH6sFOExZIMlI84pTY3Eou8eOgUvVq3lx4FfwCqlCoOah89YcxTSVTlgpiTM/3EhtkRFtOBZuV+6lhCaETMmI9h4pIZoJsvusMnztniKNYu6csnru/JzIijZnK0HVKYsdmuZab/9V6qY3qQcZVklqm6OKjKBXYxjg/HA+5ZtSKqQNCNXe7YjommlDr4im7EPzlk1ehfVXzHd9fVxv1Io4SnMIZXIAPN9CAO2hCCyiM4Rle4Q1J9ILe0ceidQ0VMyfwR+jzB2YljcU=</latexit><latexit sha1_base64="m9D8b9+6jZjO6ONvK8wPti1yMr8=">AAAB63icbZDLSgMxFIZPvNZ6q7p0EyyCCykzIthlwY3LCvYC7VAyaaYNTTJjkhHK0Fdw40IRt76QO9/GTDsLbf0h8PGfc8g5f5gIbqznfaO19Y3Nre3STnl3b//gsHJ03DZxqilr0VjEuhsSwwRXrGW5FaybaEZkKFgnnNzm9c4T04bH6sFOExZIMlI84pTY3Eou8eOgUvVq3lx4FfwCqlCoOah89YcxTSVTlgpiTM/3EhtkRFtOBZuV+6lhCaETMmI9h4pIZoJsvusMnztniKNYu6csnru/JzIijZnK0HVKYsdmuZab/9V6qY3qQcZVklqm6OKjKBXYxjg/HA+5ZtSKqQNCNXe7YjommlDr4im7EPzlk1ehfVXzHd9fVxv1Io4SnMIZXIAPN9CAO2hCCyiM4Rle4Q1J9ILe0ceidQ0VMyfwR+jzB2YljcU=</latexit><latexit sha1_base64="m9D8b9+6jZjO6ONvK8wPti1yMr8=">AAAB63icbZDLSgMxFIZPvNZ6q7p0EyyCCykzIthlwY3LCvYC7VAyaaYNTTJjkhHK0Fdw40IRt76QO9/GTDsLbf0h8PGfc8g5f5gIbqznfaO19Y3Nre3STnl3b//gsHJ03DZxqilr0VjEuhsSwwRXrGW5FaybaEZkKFgnnNzm9c4T04bH6sFOExZIMlI84pTY3Eou8eOgUvVq3lx4FfwCqlCoOah89YcxTSVTlgpiTM/3EhtkRFtOBZuV+6lhCaETMmI9h4pIZoJsvusMnztniKNYu6csnru/JzIijZnK0HVKYsdmuZab/9V6qY3qQcZVklqm6OKjKBXYxjg/HA+5ZtSKqQNCNXe7YjommlDr4im7EPzlk1ehfVXzHd9fVxv1Io4SnMIZXIAPN9CAO2hCCyiM4Rle4Q1J9ILe0ceidQ0VMyfwR+jzB2YljcU=</latexit>

r
<latexit sha1_base64="8/f3Js1Df5FjO2NNBg4V/kEKfYQ=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEdpjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi01LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEdT/jMkkNSrb6KEwFMTFZXE1GXCEzYmaBMsXtroRNqKLM2GxKNgRv/eRN6NxUPcut20qjnsdRhAu4hGvwoAYNuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/aIYzs</latexit><latexit sha1_base64="8/f3Js1Df5FjO2NNBg4V/kEKfYQ=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEdpjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi01LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEdT/jMkkNSrb6KEwFMTFZXE1GXCEzYmaBMsXtroRNqKLM2GxKNgRv/eRN6NxUPcut20qjnsdRhAu4hGvwoAYNuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/aIYzs</latexit><latexit sha1_base64="8/f3Js1Df5FjO2NNBg4V/kEKfYQ=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEdpjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi01LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEdT/jMkkNSrb6KEwFMTFZXE1GXCEzYmaBMsXtroRNqKLM2GxKNgRv/eRN6NxUPcut20qjnsdRhAu4hGvwoAYNuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/aIYzs</latexit><latexit sha1_base64="8/f3Js1Df5FjO2NNBg4V/kEKfYQ=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEdpjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi01LFfcqrsU2QQvhwrkag7LX4NRzNIIpWGCat333MT4GVWGM4Hz0iDVmFA2pWPsW5Q0Qu1ny0Xn5Mo6IxLGyj5pyNL9PZHRSOtZFNjOiJqJXq8tzP9q/dSEdT/jMkkNSrb6KEwFMTFZXE1GXCEzYmaBMsXtroRNqKLM2GxKNgRv/eRN6NxUPcut20qjnsdRhAu4hGvwoAYNuIcmtIEBwjO8wpvz6Lw4787HqrXg5DPn8EfO5w/aIYzs</latexit>

Figure 5: A countermodel to (�-trans)

(RM) and (�-trans) are two sample formulas for which the choice
between the max rule and the opt rule makes a difference. To get the
whole picture (or to get closer to it), we need to extend the scope of
our study to examine not individual formulas (chosen randomly) but
axiomatic systems. This will be done in Section 4.

2.6 Selection functions

This section provides some background information on so-called selec-
tion function semantics. It may seem a distraction from the focus on
Hanssonian-type preference semantics. However, this material is needed
for subsequent developments, especially in Section 5.1.

Stemming from Stalnaker [1968] and generalized by Chellas [1975],
such a semantics was adapted to the present setting by Åqvist [2002].
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I call these new structures “selection function models”, to distinguish
them from those described above. In models of this sort, the betterness
relation � is replaced with a so-called selection function f from formulas
to subsets of W , such that, for all A in L, f(A) ⊆ W . Intuitively, f(A)
outputs all the best worlds satisfying A. The evaluation rule for the
dyadic obligation operator is phrased thus:

M,a �©(B/A) iff f(A) ⊆ ‖B‖M

From this, on derives the following evaluation rule for permission:

M,a � P (B/A) iff f(A) ∩ ‖B‖M 6= ∅

The relevant constraints for f are:

(f0) If ‖A‖M = ‖B‖M then f(A) = f(B) (Syntax-independence)
(f1) f(A) ⊆ ‖A‖M (Inclusion)
(f2) f(A) ∩ ‖B‖M ⊆ f(A ∧B) (Chernoff)
(f3) If ‖A‖M 6= ∅ then f(A) 6= ∅ (Consistency-preservation)
(f4) If f(A) ⊆ ‖B‖M then f(A ∧B) ⊆ f(A) (Aizerman)
(f5) If f(A) ∩ ‖B‖M 6= ∅ then f(A ∧B) ⊆ f(A) ∩ ‖B‖M (Arrow)

The reason why these conditions may be regarded as most central will
become apparent in Section 3, when moving to the proof theory. Åqvist
does not use (f4). It is weaker than (f5) in the following sense.

Fact 2.13. Given (f0) and (f3), (f5) implies (f4), but not vice versa
(even in the presence of (f1) and (f2)).

Proof. Let f(A) ⊆ ‖B‖. Either (i) ‖A‖ 6= ∅ or (ii) ‖A‖ = ∅. In case (i),
f(A) 6= ∅, by (f3). Thus, f(A) ∩ ‖B‖ 6= ∅. (f5) then yields the desired
result. In case (ii), ‖A‖ = ‖A ∧ B‖. By (f0), f(A) = f(A ∧ B). So
f(A ∧B) ⊆ f(A) as required.

To show that the converse implication may fail even in the presence
of (f0)-(f3), let M = (W, f, v) be such that W = {a, b, c}, v(p) = {a, b}
and v(q) = W for all q other than p, and

f(A) =
{
{a, c} if ‖A‖ = W

‖A‖ otherwise

(f0), (f1), (f2) and (f3) hold, and so does (f4). But (f5) fails:

f(q ∧ p) = {a, b} 6⊆ f(q) ∩ ‖p‖ = {a} 6= ∅

This concludes the proof.
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The names used for the first four constraints are from Parent [2015].
All these constraints have known counterparts within the framework
of rational choice theory (for an overview, see Moulin [1985]). (f2) is
identical to so-called Chernoff’s [1954] condition also known as Sen’s
condition α. (f4) may be regarded as a reformulation of the condition
called “Aizerman” in Moulin [1985] and in Lindström [1991]. Therefore
it will henceforth be referred to as the Aizerman condition. Strictly
speaking, this one is:

(f4?) If f(A) ⊆ ‖B‖ ⊆ ‖A‖ then f(B) ⊆ f(A)

It is not difficult to see that, given (f0) and (f1), (f4?) and (f4) are
equivalent.

Fact 2.14. Given (f0) and (f1), (f4?) and (f4) are equivalent.

Proof. I first verify that, given (f1), (f4?) implies (f4). Assume f(A) ⊆
‖B‖. By (f1), f(A) ⊆ ‖A‖∩‖B‖ = ‖A∧B‖ ⊆ ‖A‖. By (f4?), f(A∧B) ⊆
f(A), as required. For the converse implication, let f(A) ⊆ ‖B‖ ⊆ ‖A‖.
On the one hand, by (f0) f(A ∧ B) = f(B), since ‖A ∧ B‖ = ‖B‖.
On the other hand, a direct application of (f4) to f(A) ⊆ ‖B‖ yields
f(A ∧ B) ⊆ f(A). Putting the two together, one gets f(B) ⊆ f(A) as
required.

(f5) may similarly be regarded as a reformulation of the condition
which Hansson [1968] calls Arrow, and so I will henceforth refer to it as
the Arrow condition. Strictly speaking, this one is:

(f5?) If ‖A‖ ⊆ ‖B‖ and f(B) ∩ ‖A‖ 6= ∅ then f(A) = f(B) ∩ ‖A‖

Fact 2.15. Given (f0)-(f3), (f5?) and (f5) are equivalent.

Proof. See Hansen [1998].

Not much more will be needed later about selection functions.
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3 Proof systems

This section presents the proof systems to be studied in this chapter.

3.1 Mixed alethic-deontic logics

I will primarily be concerned with four mixed alethic-deontic logics of
increasing strength: E, F, F+(CM) and G. Systems E, F and G are
from Åqvist [1987; 2002]. They correspond to his reconstruction of Hans-
son [1969]’s system DSDL1, DSDL2 and DSDL3, respectively. F+(CM)
is from Parent [2014]. The list of all the relevant axioms is given below.
For some of the axioms, I introduce special labels in order to facilitate
reference to them later on.

The notions of theoremhood, deducibility and consistency (with re-
spect to a given system) are defined as usual. I write ` A if A is provable,
and Γ ` A if A is derivable from Γ, where Γ is a set of wffs.

System E is defined by the following axioms and rules:

Any axiomatization of classical propositional logic (PL)
S5-schemata for 2 (S5)
© (B → C/A) → (©(B/A) → ©(C/A)) (COK)
© (B/A) → 2© (B/A) (Abs)
2A → ©(A/B) (Nec)
2(A ↔ B) → (©(C/A) ↔ ©(C/B)) (Ext)
© (A/A) (Id)
© (C/A ∧ B) → ©(B → C/A) (Sh)
If ` A and ` A→ B then ` B (MP)
If ` A then ` 2A (N)

The abbreviations (PL), (S5), (MP) and (N) are self-explanatory.
(COK) is the conditional analogue of the familiar distribution axiom
K. (Abs) is the absoluteness axiom of [Lewis, 1973], and reflects the
fact that the ranking is not world-relative. (Nec) is the deontic counter-
part of the familiar necessitation rule. (Ext) permits the replacement
of necessarily equivalent sentences in the antecedent of deontic condi-
tionals. (Id) is the deontic analogue of the identity principle. (Sh) is
named after Shoham [1988, p. 77], who seems to have been the first to
discuss it. The question of whether (Id) is a reasonable law for deontic
conditionals has been much debated. A defence of (Id) can be found in
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Hansson [1969] and Prakken and Sergot [1997]–this line of defence is dis-
cussed in Parent [2012]. (For a different diagnosis, see also Spohn [1975],
Makinson [1993], Alchourrón [1993] and Parent [2001].)

For future reference I introduce the following derived principles:

If ` A ↔ B then ` ©(C/A) ↔ ©(C/B) (LLE)
If ` B → C then ` ©(B/A) → ©(C/A) (RW)
© (B/A) ∧©(C/A) → (©(B ∧ C/A) (AND)
© (C/A) ∧©(C/B) → (©(C/A ∨B) (OR)
© (C/A) ∧©(D/B)→©(C ∨D/A ∨B) (OR′)

The labels (LLE) and (RW) are borrowed from the non-monotonic logic
literature. (LLE) and (RW) are mnemonic for “Left Logical Equiva-
lence” and “Right Weakening”, respectively.

Theorem 3.1. (LLE), (RW), (AND), (OR) and (OR′) are derivable in
system E.

Proof. The proofs of (LLE) and (RW) are straightforward, and left to
the reader.

For (AND), assume ©(B/A) and ©(C/A). From the first, one gets
©(C → (B ∧ C)/A) by (RW). (COK) gives ©(C/A) → ©(B ∧ C/A).
From this and the second hypothesis, one gets ©(B ∧ C/A).

For (OR), assume ©(C/A) and ©(C/B). Using (Ext), one gets
©(C/(A∨B)∧A) and ©(C/(A∨B)∧B). By (Sh), ©(A→ C/A∨B)
and ©(B → C/A∨B). By (AND), ©((A→ C)∧ (B → C)/A∨B). By
(RW), ©((A∨B)→ C/A∨B). By (Id), ©(A∨B/A∨B). By (COK),
one then gets ©(C/A ∨B).

(OR′) is easily derived using (OR) and (RW).

Theorems 3.1 and 3.2 tell us that E is equivalently axiomatized by
replacing, in E, (COK) and (Sh) with (RW), (AND) and (OR).

Theorem 3.2. (COK) is derivable from (RW) and (AND). (Sh) is
derivable from (RW), (Id), (OR) and (LLE).

Proof. For (COK), assume ©(B → C/A) and ©(B/A). By (AND),
©((B → C) ∧B/A). By (RW), ©(C/A).

For (Sh), suppose©(C/A∧B). By (RW),©(B → C/A∧B). By (Id)
and (RW),©(B → C/A∧¬B). By (OR) and (LLE),©(B → C/A).

The basis of F is that of E with the single extra axiom:

3A→ (©(B/A)→ P (B/A)) (D?)
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(D?) is the conditional analogue of the familiar axiom D. Its import
is simply that conflicts of obligations are ruled out, for possible an-
tecedents.

F+(CM) and G are obtained by supplementing F with (CM) and
(Sp), respectively:

(©(B/A) ∧©(C/A))→©(C/A ∧B) (CM)
(P (B/A) ∧©(B → C/A))→©(C/A ∧B) (Sp)

(CM) is the principle of cautious monotony from the non-monotonic
logic literature.12 It can be shown that (CM) and (D?) are independent
of each other, given the other axioms of F. This is why their addition
is considered separately of one another. In the presence of (CM), the
following two principles are derivable:

© (B/A) ∧©(A/B)→ (©(C/A)↔©(C/B)) (CSO)
© (A/A ∨B) ∧©(B/B ∨ C)→©(A/A ∨ C) (≥-trans)

(CSO) is familiar from the literature on conditional logic. It says that
two “deontically” equivalent states of affairs trigger the same obligations.
And (≥-trans) expresses a principle of transitivity for a weak notion of
preference defined by A ≥ B iff ©(A/A ∨B).13

As mentioned, (Sp)−the distinctive axiom of G−is equivalent to the
principle of rational monotony (RM):14

(P (B/A) ∧©(C/A))→©(C/A ∧B) (RM)

F+(CM) is strictly included in G, because (CM) is derivable in G, but
(Sp) is not derivable in F+(CM).

Theorem 3.3.
(i) (CM) and (D?) are independent, given the other axioms of F;
(ii) (CSO) is a theorem of F+(CM);
(iii) (≥-trans) is a theorem of F+(CM);
(iv) (Sp) and (RM) are inter-derivable in E;
(v) (CM) is a theorem of G;
(vi) (Sp) is not a theorem of F+(CM).

Proof. The proof of (i) may be found in [Parent, 2014, Section 2.5].

12Cf. [Kraus et al., 1990].
13Cf. [Kraus et al., 1990, p. 194].
14Cf. Section 2.5.
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For (ii), assume ©(B/A), ©(A/B) and ©(C/A). From the first
and third assumptions, ©(C/A ∧ B), by (CM). This is equivalent to
©(C/B ∧ A) by (Ext). Using (Sh), ©(A → C/B). From this together
with the second assumption, one then gets ©(C/B), by (RW). For the
derivation of ©(C/A) from ©(C/B), the argument is similar. This es-
tablishes (CSO).

For (iii), assume ©(A/A ∨ B) and ©(B/B ∨ C). Using (OR′) and
(Ext), ©(A ∨B/A ∨B ∨ C). By (Id) and (RW), ©(A ∨B ∨ C/A ∨B)
is a theorem. Using (CSO), one immediately gets ©(A/A∨B ∨C). By
(Id), ©(C/C). By (OR′) and (Ext), one gets ©(A∨C/A∨B ∨C). By
(CM), ©(A/(A ∨B ∨ C) ∧ (A ∨ C)). By (Ext), ©(A/A ∨ C).

For (iv), suppose P (B/A) and ©(C/A). By (RW), ©(B → C/A),
and so ©(C/A∧B) by (Sp). Conversely, suppose P (B/A) and ©(B →
C/A). By (RM), ©(B → C/A ∧ B). Hence ©(B ∧ (B → C)/A) by
(Sh). One then gets ©(C/A) by (RW).

For (v). Suppose©(B/A) and©(C/A). Either 3A or ¬3A. In the
first case, P (B/A) by (D?), and so©(C/A∧B) by (RM). In the second
case, 2(A ↔ (A ∧ B)), and thus ©(C/A ∧ B) by (Ext). Either way,
©(C/A ∧B).

The proof of (vi) is given in Appendix A, where I make use of an
observation which will be available only later.

3.2 Pure deontic conditional logics

The above systems are mixed alethic-deontic logics. Goble [2015, p. 94]
shows that each of F, F+(CM) and G has a “pure deontic conditional”
counterpart. I borrow this term from Alchourrón [1995, p. 87], who uses
the term “pure conditional axiomatisation” to refer to an axiomatisation
in a language in which we only have the conditional (obligation) operator
as a primitive connective added to those of classical propositional logic.
This language still allows iterated modalities and mixed formulas, and
thus is still distinct from the language of Hansson’s systems.

The key point is that in systems F, F+(CM) and G, the alethic
operators 2 and 3 become superfluous, because 2A and 3A turn out
to be equivalent with ©(⊥/¬A) and P (>/A), respectively. (This is not
the case in E, and this is why it is left out of the picture.) Thus, in
the description of the three systems, one might eliminate all occurrences
of 2 and 3 using these definitions, so that everything is written using
the deontic modalities only. Drawing on this idea Goble defines three
systems, called DDL-D-3, DDL-D-4 and DDL-D-5, using a language
with no other primitive modality than ©(−/−). (Nevertheless, to avoid
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cumbersome notation 2 and 3 are kept in the language as derived con-
nectives.)15 The distinctive axiom of DDL-D-4 is (CM), while that of
DDL-D-5 is (RM). Roughly speaking, DDL-D-3 may be described as
the system that results from F by leaving out (D?) (its pure conditional
counterpart follows from the other axioms), and by replacing all occur-
rences of 2 and 3 by their definition throughout in (S5), (Abs), (Nec),
(Ext) and (N). Goble’s own axiomatic characterisation of DDL-D-3 is
as follows:

Any axiomatization of classical propositional logic (PL)
2A→ A (aka © (⊥/¬A)→ A) (T)
If ` A ↔ B then ` ©(C/A) ↔ ©(C/B) (LLE)
If ` B → C then ` ©(B/A) → ©(C/A) (RW)
© (B/A) ∧©(C/A) → (©(B ∧ C/A) (AND)
© (B/A) ∧©(B/C) → (©(B/A ∨ C) (OR)
© (A/A) (Id)
© (B/A) → ©(©(B/A)/C) (D©4)
P (B/A) → ©(P (B/A)/C) (D©5)
If ` A and ` A→ B then ` B (MP)
If ` A then ` 2A (aka © (⊥/¬A)) (N′)

(D©4) and (D©5) are the dyadic generalization of the well-known prin-
ciples (4) ©A → ©©A and (5) PA → ©PA. (T) and (N′) are self-
explanatory.

Goble writes that “DDL-D-3 is equivalent to F, DDL-D-4 to
F+(CM) and DDL-D-5 to G” [Goble, 2015, p. 102]. All the axioms
and rules of each member of the DDL-D family are derivable in the
corresponding mixed alethic-deontic logic. Hence the inclusions:

DDL-D-3 ⊆ F DDL-D-4 ⊆ F+(CM) DDL-D-5 ⊆ G

The converse inclusions also hold insofar as 2 and 3 are kept as de-
rived connectives in the language of the pure deontic logics, and iden-
tified with those appearing in the language of the corresponding mixed
alethic-deontic logics. The initial goal was to identify the pure condi-
tional counterparts of Åqvist’s systems. For the sake of consistency, one

15If in Goble’s manuscript we look more closely at the two pairs of operators, we
see a subtle difference in notation between them−Åqvist’s operators are written as
“�” and “♦”, while Goble’s operators are written as “2” and “3”. For simplicity’s
sake I will use the same notation for both pairs.
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may prefer not to have 2 and 3 in the language of the pure deontic log-
ics as a derived connective. In that case, the relationship between the
two families of systems should be described differently. One suggestion
is to say that each of F, F+(CM) and G can faithfully be embedded into
their counterpart in the DDL-D family. That is: there is a translation ?
from the language of F, F+(CM) and G into the language of DDL-D-3,
DDL-D-4 and DDL-D-5, such that ? preserves both theoremhood and
unprovability.

Figure 6 provides a map of the systems I have discussed. An arrow
indicates (proper) containment in the sense that the system from which
the arrow starts contains all the theorems of the system at which the
arrow points, but not vice versa. The systems to the left of the dashed
line are mixed alethic-deontic logics, while those to its right are pure
deontic logics.

One can find more systems in the literature. In particular, there are
also Hansson’s DSDL1-3 as axiomatized by Goble [2019], or Lewis’s sys-
tem VN of [1973], which turns out to be equivalent with van Fraassen’s
system CD of [1972] and Goble’s system SDDL of [2003]. However, none
will be a part of the discussion. I mentioned that F and G were meant to
be a reconstruction of Hansson’s systems DSDL2 and DSDL3. Neither
of F and G contains its DSDL counterpart. Both DSDL2 and DSDL3
have the rule “If 6` ¬A, then ` P (>/A)”, while neither of F and G does.

E<latexit sha1_base64="O9UT4/nu/hhbUt+9MfgFNIfjDcU=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRYFMFjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3jAVXBvP+3ZKa+sbm1vl7crO7t7+gXt41NJJphg2WSIS1QmpRsElNg03AjupQhqHAtvh+HZWbz+h0jyRj2aSYhDToeQRZ9RYq533wojcTftu1at5c5FV8AuoQqFG3/3qDRKWxSgNE1Trru+lJsipMpwJnFZ6mcaUsjEdYteipDHqIJ+vOyVn1hmQKFH2SUPm7u+JnMZaT+LQdsbUjPRybWb+V+tmJroOci7TzKBki4+iTBCTkNntZMAVMiMmFihT3O5K2IgqyoxNqGJD8JdPXoXWRc23/HBZrd8UcZThBE7hHHy4gjrcQwOawGAMz/AKb07qvDjvzseiteQUM8fwR87nD+F+j0E=</latexit><latexit sha1_base64="O9UT4/nu/hhbUt+9MfgFNIfjDcU=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRYFMFjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3jAVXBvP+3ZKa+sbm1vl7crO7t7+gXt41NJJphg2WSIS1QmpRsElNg03AjupQhqHAtvh+HZWbz+h0jyRj2aSYhDToeQRZ9RYq533wojcTftu1at5c5FV8AuoQqFG3/3qDRKWxSgNE1Trru+lJsipMpwJnFZ6mcaUsjEdYteipDHqIJ+vOyVn1hmQKFH2SUPm7u+JnMZaT+LQdsbUjPRybWb+V+tmJroOci7TzKBki4+iTBCTkNntZMAVMiMmFihT3O5K2IgqyoxNqGJD8JdPXoXWRc23/HBZrd8UcZThBE7hHHy4gjrcQwOawGAMz/AKb07qvDjvzseiteQUM8fwR87nD+F+j0E=</latexit><latexit sha1_base64="O9UT4/nu/hhbUt+9MfgFNIfjDcU=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRYFMFjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3jAVXBvP+3ZKa+sbm1vl7crO7t7+gXt41NJJphg2WSIS1QmpRsElNg03AjupQhqHAtvh+HZWbz+h0jyRj2aSYhDToeQRZ9RYq533wojcTftu1at5c5FV8AuoQqFG3/3qDRKWxSgNE1Trru+lJsipMpwJnFZ6mcaUsjEdYteipDHqIJ+vOyVn1hmQKFH2SUPm7u+JnMZaT+LQdsbUjPRybWb+V+tmJroOci7TzKBki4+iTBCTkNntZMAVMiMmFihT3O5K2IgqyoxNqGJD8JdPXoXWRc23/HBZrd8UcZThBE7hHHy4gjrcQwOawGAMz/AKb07qvDjvzseiteQUM8fwR87nD+F+j0E=</latexit><latexit sha1_base64="O9UT4/nu/hhbUt+9MfgFNIfjDcU=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRYFMFjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3jAVXBvP+3ZKa+sbm1vl7crO7t7+gXt41NJJphg2WSIS1QmpRsElNg03AjupQhqHAtvh+HZWbz+h0jyRj2aSYhDToeQRZ9RYq533wojcTftu1at5c5FV8AuoQqFG3/3qDRKWxSgNE1Trru+lJsipMpwJnFZ6mcaUsjEdYteipDHqIJ+vOyVn1hmQKFH2SUPm7u+JnMZaT+LQdsbUjPRybWb+V+tmJroOci7TzKBki4+iTBCTkNntZMAVMiMmFihT3O5K2IgqyoxNqGJD8JdPXoXWRc23/HBZrd8UcZThBE7hHHy4gjrcQwOawGAMz/AKb07qvDjvzseiteQUM8fwR87nD+F+j0E=</latexit>

F
<latexit sha1_base64="y0z8hw1AinMSgDmhDdfL/fq7RTg=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRYFMRjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3jAVXBvP+3ZKa+sbm1vl7crO7t7+gXt41NJJphg2WSIS1QmpRsElNg03AjupQhqHAtvh+HZWbz+h0jyRj2aSYhDToeQRZ9RYq533wojcTftu1at5c5FV8AuoQqFG3/3qDRKWxSgNE1Trru+lJsipMpwJnFZ6mcaUsjEdYteipDHqIJ+vOyVn1hmQKFH2SUPm7u+JnMZaT+LQdsbUjPRybWb+V+tmJroOci7TzKBki4+iTBCTkNntZMAVMiMmFihT3O5K2IgqyoxNqGJD8JdPXoXWRc23/HBZrd8UcZThBE7hHHy4gjrcQwOawGAMz/AKb07qvDjvzseiteQUM8fwR87nD+MDj0I=</latexit><latexit sha1_base64="y0z8hw1AinMSgDmhDdfL/fq7RTg=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRYFMRjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3jAVXBvP+3ZKa+sbm1vl7crO7t7+gXt41NJJphg2WSIS1QmpRsElNg03AjupQhqHAtvh+HZWbz+h0jyRj2aSYhDToeQRZ9RYq533wojcTftu1at5c5FV8AuoQqFG3/3qDRKWxSgNE1Trru+lJsipMpwJnFZ6mcaUsjEdYteipDHqIJ+vOyVn1hmQKFH2SUPm7u+JnMZaT+LQdsbUjPRybWb+V+tmJroOci7TzKBki4+iTBCTkNntZMAVMiMmFihT3O5K2IgqyoxNqGJD8JdPXoXWRc23/HBZrd8UcZThBE7hHHy4gjrcQwOawGAMz/AKb07qvDjvzseiteQUM8fwR87nD+MDj0I=</latexit><latexit sha1_base64="y0z8hw1AinMSgDmhDdfL/fq7RTg=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRYFMRjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3jAVXBvP+3ZKa+sbm1vl7crO7t7+gXt41NJJphg2WSIS1QmpRsElNg03AjupQhqHAtvh+HZWbz+h0jyRj2aSYhDToeQRZ9RYq533wojcTftu1at5c5FV8AuoQqFG3/3qDRKWxSgNE1Trru+lJsipMpwJnFZ6mcaUsjEdYteipDHqIJ+vOyVn1hmQKFH2SUPm7u+JnMZaT+LQdsbUjPRybWb+V+tmJroOci7TzKBki4+iTBCTkNntZMAVMiMmFihT3O5K2IgqyoxNqGJD8JdPXoXWRc23/HBZrd8UcZThBE7hHHy4gjrcQwOawGAMz/AKb07qvDjvzseiteQUM8fwR87nD+MDj0I=</latexit><latexit sha1_base64="y0z8hw1AinMSgDmhDdfL/fq7RTg=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRYFMRjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYXFh7emWFn3jAVXBvP+3ZKa+sbm1vl7crO7t7+gXt41NJJphg2WSIS1QmpRsElNg03AjupQhqHAtvh+HZWbz+h0jyRj2aSYhDToeQRZ9RYq533wojcTftu1at5c5FV8AuoQqFG3/3qDRKWxSgNE1Trru+lJsipMpwJnFZ6mcaUsjEdYteipDHqIJ+vOyVn1hmQKFH2SUPm7u+JnMZaT+LQdsbUjPRybWb+V+tmJroOci7TzKBki4+iTBCTkNntZMAVMiMmFihT3O5K2IgqyoxNqGJD8JdPXoXWRc23/HBZrd8UcZThBE7hHHy4gjrcQwOawGAMz/AKb07qvDjvzseiteQUM8fwR87nD+MDj0I=</latexit>

G
<latexit sha1_base64="v3dPUyqu8oNwxnxLlBrofXQrZLI=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9KDHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0vLDy8M8POvGEquDae9+2U1tY3NrfK25Wd3b39A/fwqKWTTDFsskQkqhNSjYJLbBpuBHZShTQOBbbD8e2s3n5CpXkiH80kxSCmQ8kjzqixVjvvhRG5m/bdqlfz5iKr4BdQhUKNvvvVGyQsi1EaJqjWXd9LTZBTZTgTOK30Mo0pZWM6xK5FSWPUQT5fd0rOrDMgUaLsk4bM3d8TOY21nsSh7YypGenl2sz8r9bNTHQd5FymmUHJFh9FmSAmIbPbyYArZEZMLFCmuN2VsBFVlBmbUMWG4C+fvAqti5pv+eGyWr8p4ijDCZzCOfhwBXW4hwY0gcEYnuEV3pzUeXHenY9Fa8kpZo7hj5zPH+SIj0M=</latexit><latexit sha1_base64="v3dPUyqu8oNwxnxLlBrofXQrZLI=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9KDHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0vLDy8M8POvGEquDae9+2U1tY3NrfK25Wd3b39A/fwqKWTTDFsskQkqhNSjYJLbBpuBHZShTQOBbbD8e2s3n5CpXkiH80kxSCmQ8kjzqixVjvvhRG5m/bdqlfz5iKr4BdQhUKNvvvVGyQsi1EaJqjWXd9LTZBTZTgTOK30Mo0pZWM6xK5FSWPUQT5fd0rOrDMgUaLsk4bM3d8TOY21nsSh7YypGenl2sz8r9bNTHQd5FymmUHJFh9FmSAmIbPbyYArZEZMLFCmuN2VsBFVlBmbUMWG4C+fvAqti5pv+eGyWr8p4ijDCZzCOfhwBXW4hwY0gcEYnuEV3pzUeXHenY9Fa8kpZo7hj5zPH+SIj0M=</latexit><latexit sha1_base64="v3dPUyqu8oNwxnxLlBrofXQrZLI=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9KDHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0vLDy8M8POvGEquDae9+2U1tY3NrfK25Wd3b39A/fwqKWTTDFsskQkqhNSjYJLbBpuBHZShTQOBbbD8e2s3n5CpXkiH80kxSCmQ8kjzqixVjvvhRG5m/bdqlfz5iKr4BdQhUKNvvvVGyQsi1EaJqjWXd9LTZBTZTgTOK30Mo0pZWM6xK5FSWPUQT5fd0rOrDMgUaLsk4bM3d8TOY21nsSh7YypGenl2sz8r9bNTHQd5FymmUHJFh9FmSAmIbPbyYArZEZMLFCmuN2VsBFVlBmbUMWG4C+fvAqti5pv+eGyWr8p4ijDCZzCOfhwBXW4hwY0gcEYnuEV3pzUeXHenY9Fa8kpZo7hj5zPH+SIj0M=</latexit><latexit sha1_base64="v3dPUyqu8oNwxnxLlBrofXQrZLI=">AAAB7nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9KDHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0vLDy8M8POvGEquDae9+2U1tY3NrfK25Wd3b39A/fwqKWTTDFsskQkqhNSjYJLbBpuBHZShTQOBbbD8e2s3n5CpXkiH80kxSCmQ8kjzqixVjvvhRG5m/bdqlfz5iKr4BdQhUKNvvvVGyQsi1EaJqjWXd9LTZBTZTgTOK30Mo0pZWM6xK5FSWPUQT5fd0rOrDMgUaLsk4bM3d8TOY21nsSh7YypGenl2sz8r9bNTHQd5FymmUHJFh9FmSAmIbPbyYArZEZMLFCmuN2VsBFVlBmbUMWG4C+fvAqti5pv+eGyWr8p4ijDCZzCOfhwBXW4hwY0gcEYnuEV3pzUeXHenY9Fa8kpZo7hj5zPH+SIj0M=</latexit>

F+(CM)
<latexit sha1_base64="lw89t3d8vTtScc+rcjxjqqq3dKw=">AAAB83icbZDLSgMxFIbPeK31VnXpJliEilBmutFlsSBuhAr2Ap2hZNJMG5rJhCQjlKGv4caFIm59GXe+jWk7C239IfDxn3M4J38oOdPGdb+dtfWNza3twk5xd2//4LB0dNzWSaoIbZGEJ6obYk05E7RlmOG0KxXFcchpJxw3ZvXOE1WaJeLRTCQNYjwULGIEG2v5mR9G6HZ6WWncX/RLZbfqzoVWwcuhDLma/dKXP0hIGlNhCMda9zxXmiDDyjDC6bTop5pKTMZ4SHsWBY6pDrL5zVN0bp0BihJlnzBo7v6eyHCs9SQObWeMzUgv12bmf7VeaqLrIGNCpoYKslgUpRyZBM0CQAOmKDF8YgETxeytiIywwsTYmIo2BG/5y6vQrlU9yw+1cv0mj6MAp3AGFfDgCupwB01oAQEJz/AKb07qvDjvzseidc3JZ07gj5zPH0AFkH4=</latexit><latexit sha1_base64="lw89t3d8vTtScc+rcjxjqqq3dKw=">AAAB83icbZDLSgMxFIbPeK31VnXpJliEilBmutFlsSBuhAr2Ap2hZNJMG5rJhCQjlKGv4caFIm59GXe+jWk7C239IfDxn3M4J38oOdPGdb+dtfWNza3twk5xd2//4LB0dNzWSaoIbZGEJ6obYk05E7RlmOG0KxXFcchpJxw3ZvXOE1WaJeLRTCQNYjwULGIEG2v5mR9G6HZ6WWncX/RLZbfqzoVWwcuhDLma/dKXP0hIGlNhCMda9zxXmiDDyjDC6bTop5pKTMZ4SHsWBY6pDrL5zVN0bp0BihJlnzBo7v6eyHCs9SQObWeMzUgv12bmf7VeaqLrIGNCpoYKslgUpRyZBM0CQAOmKDF8YgETxeytiIywwsTYmIo2BG/5y6vQrlU9yw+1cv0mj6MAp3AGFfDgCupwB01oAQEJz/AKb07qvDjvzseidc3JZ07gj5zPH0AFkH4=</latexit><latexit sha1_base64="lw89t3d8vTtScc+rcjxjqqq3dKw=">AAAB83icbZDLSgMxFIbPeK31VnXpJliEilBmutFlsSBuhAr2Ap2hZNJMG5rJhCQjlKGv4caFIm59GXe+jWk7C239IfDxn3M4J38oOdPGdb+dtfWNza3twk5xd2//4LB0dNzWSaoIbZGEJ6obYk05E7RlmOG0KxXFcchpJxw3ZvXOE1WaJeLRTCQNYjwULGIEG2v5mR9G6HZ6WWncX/RLZbfqzoVWwcuhDLma/dKXP0hIGlNhCMda9zxXmiDDyjDC6bTop5pKTMZ4SHsWBY6pDrL5zVN0bp0BihJlnzBo7v6eyHCs9SQObWeMzUgv12bmf7VeaqLrIGNCpoYKslgUpRyZBM0CQAOmKDF8YgETxeytiIywwsTYmIo2BG/5y6vQrlU9yw+1cv0mj6MAp3AGFfDgCupwB01oAQEJz/AKb07qvDjvzseidc3JZ07gj5zPH0AFkH4=</latexit><latexit sha1_base64="lw89t3d8vTtScc+rcjxjqqq3dKw=">AAAB83icbZDLSgMxFIbPeK31VnXpJliEilBmutFlsSBuhAr2Ap2hZNJMG5rJhCQjlKGv4caFIm59GXe+jWk7C239IfDxn3M4J38oOdPGdb+dtfWNza3twk5xd2//4LB0dNzWSaoIbZGEJ6obYk05E7RlmOG0KxXFcchpJxw3ZvXOE1WaJeLRTCQNYjwULGIEG2v5mR9G6HZ6WWncX/RLZbfqzoVWwcuhDLma/dKXP0hIGlNhCMda9zxXmiDDyjDC6bTop5pKTMZ4SHsWBY6pDrL5zVN0bp0BihJlnzBo7v6eyHCs9SQObWeMzUgv12bmf7VeaqLrIGNCpoYKslgUpRyZBM0CQAOmKDF8YgETxeytiIywwsTYmIo2BG/5y6vQrlU9yw+1cv0mj6MAp3AGFfDgCupwB01oAQEJz/AKb07qvDjvzseidc3JZ07gj5zPH0AFkH4=</latexit>

DDL-D-3
<latexit sha1_base64="xuxpUPB1zmlv51ktaiUAwRljDvc=">AAAB7nicbZA9TwJBEIbn8AvxC7W02UhMbCB3WGisSKSwsMBEhAQuZG+Zgw17e5fdPRNC+BE2Fhpj6++x89+4wBUKvskmT96Zyc68QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QOOYo5b</latexit><latexit sha1_base64="xuxpUPB1zmlv51ktaiUAwRljDvc=">AAAB7nicbZA9TwJBEIbn8AvxC7W02UhMbCB3WGisSKSwsMBEhAQuZG+Zgw17e5fdPRNC+BE2Fhpj6++x89+4wBUKvskmT96Zyc68QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QOOYo5b</latexit><latexit sha1_base64="xuxpUPB1zmlv51ktaiUAwRljDvc=">AAAB7nicbZA9TwJBEIbn8AvxC7W02UhMbCB3WGisSKSwsMBEhAQuZG+Zgw17e5fdPRNC+BE2Fhpj6++x89+4wBUKvskmT96Zyc68QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QOOYo5b</latexit><latexit sha1_base64="xuxpUPB1zmlv51ktaiUAwRljDvc=">AAAB7nicbZA9TwJBEIbn8AvxC7W02UhMbCB3WGisSKSwsMBEhAQuZG+Zgw17e5fdPRNC+BE2Fhpj6++x89+4wBUKvskmT96Zyc68QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QOOYo5b</latexit>

DDL-D-4
<latexit sha1_base64="pCFyBaz1WWVRX/UaEEd5r90Nhp8=">AAAB7nicbZDPSwJBFMff2i+zX1bHLkMSdFF2JSg6CXno0MEgU9BFZse3Ojg7u8zMBiL+EV06FNG1v6db/02j7qG0Lwx8+L73mPe+QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QOP5o5c</latexit><latexit sha1_base64="pCFyBaz1WWVRX/UaEEd5r90Nhp8=">AAAB7nicbZDPSwJBFMff2i+zX1bHLkMSdFF2JSg6CXno0MEgU9BFZse3Ojg7u8zMBiL+EV06FNG1v6db/02j7qG0Lwx8+L73mPe+QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QOP5o5c</latexit><latexit sha1_base64="pCFyBaz1WWVRX/UaEEd5r90Nhp8=">AAAB7nicbZDPSwJBFMff2i+zX1bHLkMSdFF2JSg6CXno0MEgU9BFZse3Ojg7u8zMBiL+EV06FNG1v6db/02j7qG0Lwx8+L73mPe+QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QOP5o5c</latexit><latexit sha1_base64="pCFyBaz1WWVRX/UaEEd5r90Nhp8=">AAAB7nicbZDPSwJBFMff2i+zX1bHLkMSdFF2JSg6CXno0MEgU9BFZse3Ojg7u8zMBiL+EV06FNG1v6db/02j7qG0Lwx8+L73mPe+QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QOP5o5c</latexit>

DDL-D-5
<latexit sha1_base64="AWFr4rDVtqknlnRIIvw24sw94EQ=">AAAB7nicbZDPSwJBFMff2i+zX1bHLkMSdFF2hSg6CXno0MEgU9BFZse3Ojg7u8zMBiL+EV06FNG1v6db/02j7qG0Lwx8+L73mPe+QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QORao5d</latexit><latexit sha1_base64="AWFr4rDVtqknlnRIIvw24sw94EQ=">AAAB7nicbZDPSwJBFMff2i+zX1bHLkMSdFF2hSg6CXno0MEgU9BFZse3Ojg7u8zMBiL+EV06FNG1v6db/02j7qG0Lwx8+L73mPe+QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QORao5d</latexit><latexit sha1_base64="AWFr4rDVtqknlnRIIvw24sw94EQ=">AAAB7nicbZDPSwJBFMff2i+zX1bHLkMSdFF2hSg6CXno0MEgU9BFZse3Ojg7u8zMBiL+EV06FNG1v6db/02j7qG0Lwx8+L73mPe+QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QORao5d</latexit><latexit sha1_base64="AWFr4rDVtqknlnRIIvw24sw94EQ=">AAAB7nicbZDPSwJBFMff2i+zX1bHLkMSdFF2hSg6CXno0MEgU9BFZse3Ojg7u8zMBiL+EV06FNG1v6db/02j7qG0Lwx8+L73mPe+QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uHRo45TxbDJYhGrdkA1Ci6xabgR2E4U0igQ2ApGN7N66wmV5rF8MOME/YgOJA85o8ZarXr9rlwvX/SKJbfizkVWwcugBJkaveJXtx+zNEJpmKBadzw3Mf6EKsOZwGmhm2pMKBvRAXYsShqh9ifzdafkzDp9EsbKPmnI3P09MaGR1uMosJ0RNUO9XJuZ/9U6qQmv/AmXSWpQssVHYSqIicnsdtLnCpkRYwuUKW53JWxIFWXGJlSwIXjLJ6/CY7XiWb6vlmrXWRx5OIFTOAcPLqEGt9CAJjAYwTO8wpuTOC/Ou/OxaM052cwx/JHz+QORao5d</latexit>

Figure 6: Systems
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4 Determination results

This section gives a survey of the determination (i.e., soundness and
completeness) results available at the time of writing this chapter. Here
I shall be primarily interested in the mixed systems put forth by Åqvist.
Two determination results are new. Their proof may be found in the Ap-
pendices. To keep this chapter at a reasonable length, the proofs of the
other results are omitted. Soundness and completeness are understood
in their strong version: they conjointly establish a match between the
deductibility and the semantic consequence relations, with no restriction
on the cardinality of the premise set Γ. The statement of the theorem
is written in the form “Γ ` A iff Γ |= A”.

4.1 Core results

A synopsis of the core determination results is given in Table 1.

Properties of � max opt
binary relation E E
limitedness F F
smoothness F+(CM) F+(CM)
smoothness
transitivity F+(CM) G

Table 1: Core results

This table must be read as follows. The leftmost column shows the con-
straints placed on �. The top row covers the class of all preference
models; one does not require any special properties of � apart from be-
ing a relation. The other two columns show the corresponding systems,
the middle column for models applying the max rule, and the rightmost
one for models applying the opt rule. It is understood that limitedness
is defined for max in the max column, and for opt in the opt column.

Below I state formally the results reported in Table 1.

Theorem 4.1.
(i) Under the opt rule ( resp., the max rule), E is sound and complete

with respect to the class of all preference models;
(ii) Under the opt rule ( resp., the max rule), F is sound and complete

with respect to the class of preference models in which � is opt-
limited (resp. max-limited).
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Proof. See [Parent, 2015].

Theorem 4.2.
(i) Under the opt rule ( resp., the max rule), F + (CM) is sound and

complete with respect to the class of preference models in which �
is opt-smooth (resp. max-smooth);

(ii) Under the max rule, F + (CM) is sound and complete with re-
spect to the class of preference models in which � is max-smooth
and transitive.

Proof. For (i), see [Parent, 2014]. For (ii), see Appendix B.

Theorem 4.2 (ii) tells us that, under the max rule, and given max-
smoothness, the transitivity of � has no import. We will see that this
also holds in the absence of max-smoothness. These results are in sharp
contrast with those for the opt rule. For instance, in the presence of
opt-smoothness, transitivity boosts the logic from F+(CM) to G.

Theorem 4.3. Under the opt rule, G is sound and complete with re-
spect to the class of preference models in which � is opt-smooth and
transitive.

Proof. See [Parent, 2014; Parent, 2008].

4.2 Adding reflexivity and totalness

Table 2 shows what happens when the constraints of reflexivity and
of totalness are added. Reflexivity has no import. Totalness makes a
difference only under the max rule in one case, when it is combined with
transitivity and smoothness. Below I state formally the results shown
in the table.

Theorem 4.4.
(i) Under the opt rule ( resp., the max rule), E is sound and complete

with respect to:
(a) the class of preference models in which � is reflexive;
(b) the class of preference models in which � is total.

(ii) Under the opt rule ( resp., the max rule), F is sound and complete
with respect to:
(a) the class of preference models in which � is opt-limited ( resp.,

max-limited) and reflexive;
(b) the class of preference models in which � is opt-limited ( resp.,

max-limited) and total.
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Proof. See [Parent, 2015].

Theorem 4.5.
(i) Under the opt rule ( resp., the max rule), F + (CM) is sound and

complete with respect to:
(a) the class of preference models in which � is opt-smooth ( resp.,

max-smooth) and reflexive;
(b) the class of preference models in which � is opt-smooth ( resp.,

max-smooth) and total.
(ii) Under the max rule, F + (CM) is sound and complete with re-

spect to the class of preference models in which � is max-smooth,
transitive and reflexive.

Proof. For (i), see [Parent, 2014]. For (ii), see Appendix B.

Properties of � max opt
reflexivity E E
totalness E E
limitedness F Freflexivity
limitedness F Ftotalness
smoothness F+(CM) F+(CM)reflexivity
smoothness F+(CM) F+(CM)totalness
smoothness

F+(CM) Gtransitivity
reflexivity
smoothness

Gtransitivity
totalness

G

Table 2: Adding reflexivity and totalness

Theorem 4.6.
(i) Under the opt rule, G is sound and complete with respect to:

(a) the class of preference models in which � is opt-smooth, tran-
sitive and reflexive;
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(b) the class of preference models in which � is opt-smooth, tran-
sitive and total.

(ii) Under the max rule, G is sound and complete with respect to the
class of preference models in which � is max-smooth, transitive
and total.

Proof. See [Parent, 2014].

4.3 Transitivity without smoothness (max rule)

This section reports two determination results for the transitive (and
not necessarily smooth) case.

Theorem 4.7. Under the max rule, E is sound and complete with re-
spect to:
(i) the class of preference models in which � is transitive;
(ii) the class of preference models in which � is transitive and reflexive.

Proof. See Appendix C.

Theorem 4.8. Under the max rule, F is sound and complete with re-
spect to:
(i) the class of preference models in which � is max-limited and tran-

sitive;
(ii) the class of preference models in which � is max-limited, transitive

and reflexive.

Proof. See Appendix C.

I summarize these results in Table 3.

Properties of � max opt
transitivity E ?
transitivity E ?reflexivity
transitivity F Glimitedness
transitivity

F Glimitedness
reflexivity

Table 3: Non-smooth transitive betterness under the max rule
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The middle column tells us that, under the max rule, transitivity
alone has no import, be it combined or not with reflexivity, and be
it combined or not with limitedness. This observation does not carry
over to the opt rule. Transitivity combined with opt-limitedness boosts
the logic from F+(CM) to G. (Given transitivity, opt-limitedness and
opt-smoothness are equivalent.) On the other hand, consider (�-trans):

P (A/A ∨B) ∧ P (B/B ∨ C)→ P (A/A ∨ C) (�-trans)

We know that under the opt-rule (�-trans) is valid if � is required to be
transitive (cf. Observation 2.11). Thus, under the opt rule, the system
obtained by supplementing E with (Sp) and (�-trans) is sound with
respect to the class of preference models in which � is transitive and
with respect to the class of those in which it is also reflexive. It is not
known whether it is also complete with respect to these two classes of
models.16 This is indicated by a question mark in Table 3.

In Section 2.3, I mentioned the possibility of defining “best” in terms
of maximization under the transitive closure �? of �. I called this rule
of interpretation the quasi-max rule. One has:

Theorem 4.9. Under the quasi-max rule, E is sound and complete with
respect to:
(i) the class of all preference models;
(ii) the class of preference models in which � is reflexive.

Proof. This follows from Theorem 4.7 and Observation 2.6.

4.4 Pure deontic conditional counterparts

Analogous results have been obtained by Goble for his pure deontic
systems DDL-D-3, DDL-D-4 and DDL-D-5. Table 4 summarizes these
results. As far as the contrast between maximality and optimality is
concerned, the story seems to remain the same. I shall make two com-
ments.

• First, there is no known determination result for (i) the class of
all preference models (ii) the class of those in which � is required
to be reflexive, and (iii) the class of those in which � is required
to be total. Hence the presence of a question mark in the relevant
cells.

16This is also pointed out by [Goble, 2015].
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• Second, the axiomatic counterpart of the limitedness assumption
changes. In Åqvist’s systems, limitedness corresponds to (D?),
whose pure deontic conditional counterpart is a theorem of DDL-
D-2. The limitedness assumption validates the (T) axiom; this one
takes over the role of (D?):

2A→ A (aka© (⊥/¬A)→ A) (T)

Properties of � max opt
Binary relation ? ?
reflexivity ? ?
totalness ? ?
limitedness DDL-D-3 DDL-D-3
limitedness DDL-D-3 DDL-D-3reflexivity
limitedness DDL-D-3 DDL-D-3totalness
smoothness DDL-D-4 DDL-D-4
smoothness DDL-D-4 DDL-D-4reflexivity
smoothness DDL-D-4 DDL-D-4totalness
smoothness DDL-D-4 DDL-D-5transitivity
smoothness

DDL-D-4 DDL-D-5transitivity
reflexivity
smoothness

DDL-D-5transitivity
totalness

DDL-D-5

Table 4: Pure deontic conditional counterparts

4.5 Methods for proving completeness

Some remarks on the methods for proving the completeness part of the
above determination results are in order. They will help the reader to
get a feeling of what is involved.
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4.5.1 Direct canonical model construction

All the proofs of completeness mentioned above are based on canonical
models (see, for instance, [Chellas, 1980]). The proofs of completeness
of F+(CM) and G in [Parent, 2008; Parent, 2014] use a direct canon-
ical model construction. Adapting the canonical model technique to a
preference-based setting is not as straightforward as might seem at first
sight. Roughly speaking, the worlds in a canonical model are maximal
consistent sets (MCSs) of sentences. The main difficulty is to define the
comparative goodness relation in such a way that the semantic truth
conditions for formulas starting with a deontic operator coincide with
the set-membership relation between formulas and maximal consistent
sets. In [Åqvist, 1987; Åqvist, 2002], the technique of so-called system-
atic frame constants is used to define the betterness relation part of the
canonical model of G. Hansen [1999, p. 130] has shown that the method
fails with respect to strong completeness.

For F+(CM) and G, one can think of suitable constructions. I start
with G. The basic idea is to work with a point-generated canonical
model. The set of all the MCSs is denoted by Ω. Where a is a MCS, aA

denotes {B :©(B/A) ∈ a}.

Definition 4.10 (Canonical model, G). Let w be a fixed element of Ω.
The canonical model generated by w is the structure Mw = (W,�, V )
defined by

(i) W = {a ∈ Ω : {A : 2A ∈ w} ⊆ a}
(ii) a � b iff

(a) there is no consistent wff A such that wA ⊆ b, or
(b) there is some A ∈ a ∩ b such that wA ⊆ a

(iii) v(p) = {a ∈W : p ∈ a} for all p ∈ P.

Condition (i) says that W is the restriction of Ω to the set of MCSs
containing all the wffs A for which 2A is in the “generating” world w.
This is needed to deal with the alethic modalities. The import of condi-
tion (ii) is that the best (according to �) MCSs among those containing
A are precisely those containing all the wffs B for which ©(B/A) is in
the “generating” world w.

The required construction for F+(CM) is more complex. The worlds
in the universe of the canonical models are not just MCS’s, but MCS’s
labeled with some suitable sentence. This is needed to rank them in
terms of goodness. To be more precise, a world becomes a pair whose
first element is a MCS a, and whose second element is some formula A
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such that wA ⊆ a, where w is the MCS used to generate the canonical
model. However, the method also demands that the selected MCS is part
of the universe W of the canonical model. Given a MCS w, there may
not be any A such that wA ⊆ w. Due to this extra complication, one
needs to distinguish between a principal case and a limiting case. I give
the full details. For the sake of brevity, A≥B is used as a shorthand for
©(A/A ∨B) ∈ w, where w is some MCS.

Definition 4.11 (Canonical model, F+(CM), principal case). Let w be
a MCS such that wA ⊆ w for some A. The canonical model generated
by (w,A) is the structure M (w,A) = (W,�, V ) defined by

(i) W = {(a,B) : a ∈ Ω & wB ⊆ a}
(ii) (a,B) � (b, C) iff: either C 6≥ B or B ∈ b
(iii) v(p) = {(a,B) ∈W : p ∈ a} for all p ∈ P.

Definition 4.12 (Canonical model, F+(CM), limiting case). Let w be a
MCS such that wA ⊆ w for no A. Take an arbitrarily chosen wff A. The
canonical model generated by (w,A) is the structure M (w,A) = (W,�, V )
defined by

(i) W = W̃ ∪ {(w,A)}, where W̃ = {(a,B) : a ∈ Ω & wB ⊆ a}
(ii) �= � ∪ {((w,A), (w,A))} ∪ {(α, (w,A)) : α ∈ W̃} where � ⊆

W̃ × W̃ is defined as in Definition 4.11, putting (a,B) � (b, C) iff
either C 6≥ B or B ∈ b

(iii) v(p) = {(a,B) ∈W : p ∈ a} for all p ∈ P.

In [Parent, 2014] these two constructions are used to establish the
completeness of F+(CM) with respect to the class of models in which �
is opt-smooth (resp., max-smooth), Theorem 4.2 (i), and with respect to
the class of those in which � is also reflexive or total, Theorem 4.5 (i).

Under the max rule, F+(CM) is also sound and complete with re-
spect to the class of models in which � is max-smooth and transitive,
and with respect to the class of those in which � is also reflexive. This
is Theorem 4.2 (ii) and Theorem 4.5 (ii). These results are new to the
aforementioned paper. Their proof is given in Appendix B.

4.5.2 Completeness-via-selection-functions

Contrasting with this direct approach, the method used for E and F
in [Parent, 2015] is indirect, and takes a detour through the alterna-
tive modeling in terms of selection functions described in Section 2.6.
The proposed approach is related to the two-step methodology used
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by [Schlechta, 1997, chap. 2] when discussing representation problems
for non-monotonic structures. There are two main steps.

The first step consists in showing soundness and completeness of
the systems with respect to appropriate classes of selection function
models. I state the needed results in the following theorem, which covers
F+(CM) and G as well.

Theorem 4.13.
(i) E is sound and complete with respect to the class of selection func-

tion models M = (W, f, v) in which f meets syntax-independence
(f0), inclusion (f1) and Chernoff (f2);

(ii) F is sound and complete with respect to the class of selection func-
tion modelsM = (W, f, v) in which f meets in addition consistency-
preservation (f3);

(iii) F+(CM) is sound and complete with respect to the class of selec-
tion function models M = (W, f, v) in which f meets in addition
Aizerman (f4);

(iv) G is sound and complete with respect to the class of selection func-
tion models M = (W, f, v) in which f meets in addition Arrow (f5).

Proof. See [Åqvist, 2002, Theorem 77, p. 251]. Let w be a fixed element
of Ω. Define the canonical model generated by w as the model Mw =
(W, f, v) where

• W = {a ∈ Ω : {A : 2A ∈ w} ⊆ a}
• f(A) = {a ∈ Ω : {B :©(B/A) ∈ w} ⊆ a}
• v(p) = {a ∈ Ω : p ∈ a}

Åqvist does not consider (CM). It is a straightforward matter to verify
that, in the canonical model for F+(CM), fmeets Aizerman (f4). Details
are omitted.

The second step consists in showing that the selection function se-
mantics is equivalent with the preference-based semantics. One half of
the equivalence is relatively easy to establish. This is Theorem 4.14 be-
low. For the reason explained in Section 4, care should be taken with
the Arrow condition. Under the max rule it calls for both transitivity
and totalness of �, while under the opt rule the constraint calls for
transitivity only.

Theorem 4.14.
(i) For every preference model M = (W,�, v) applying the opt rule,

there is an equivalent selection function model M ′ = (W, f, v) (with

38



Preference Semantics for Hansson-type Dyadic Deontic Logic

W and v the same) in which f meets syntax-independence (f0),
inclusion (f1) and Chernoff (f2). If � is opt-limited, then f meets
consistency-preservation (f3). If � meets opt-smoothness, then f
meets Aizerman (f4). If � is transitive, then f meets Arrow (f5).

(ii) For every preference model M = (W,�, v) applying the max rule,
there is an equivalent selection function model M ′ = (W, f, v) (with
W and v the same) in which f meets syntax-independence (f0),
inclusion (f1) and Chernoff (f2). If � is max-limited, then f meets
consistency-preservation (f3). If � meets max-smoothness, then f
meets Aizerman (f4). If � is transitive and total, then f meets
Arrow (f5).

Proof. For (i): starting with M = (W,�, v), define M ′ = (W, f, v) by
putting f(A) = opt�(‖A‖M ) for all wff A. For (ii): starting with M =
(W,�, v), define M ′ = (W, f, v) by putting f(A) = max�(‖A‖M ) for all
wff A.

The hard part of the proof of equivalence is contained in the following
theorem. This one extends a known result from rational choice theory
(see, e.g., [Herzberger, 1973]) to the case where the Arrow condition is
no longer available.

Theorem 4.15. For every selection function model M = (W, f, v) in
which f meets syntax-independence, inclusion and Chernoff, there is a
preference model M ′ = (W ′,�, v′) such that, under the opt rule, M ′ is
equivalent to M . Furthermore, if f meets consistency-preservation, then
� is opt-limited.

Proof. See [Parent, 2015, Theorem 3.5]. I recall the proposed construc-
tion. Let M = (W, f, v). For all a ∈ W , define Ya = {‖C‖M ⊆ W | a ∈
‖C‖M − f(C)}. Let Ya = {Xi}i∈I . Put Fa := ∏

i∈I Xi. Intuitively, Fa is
the (possibly infinite) cartesian product of all the sets in Ya. Formally,
Fa is the set of all the functions g defined on the index set I such that
the value of the function g at a particular index i is an element of Xi:

{g : I →
⋃
i∈I

Xi | (∀i ∈ I)(g(i) ∈ Xi)}

The axiom of choice is assumed. Define M ′ = (W ′,�, v′) as follows:

• W ′ = {〈a, g〉 | a, b ∈W, g ∈ Fa}
• 〈a, g〉 � 〈b, g′〉 iff b 6∈ Rng(g))
• v′(p) = {〈a, g〉 : a ∈ v(p)}
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Rng(g) denotes the range of g, viz {c | 〈i, c〉 ∈ g for some i ∈ I}. The
verification that the construction above actually does the desired job
proceeds via a series of lemmas, for which the reader is referred to the
above paper.

Combined with Theorem 4.13 (i) and (ii), Theorem 4.15 yields com-
pleteness of E with respect to the class of all preference models for the
interpretation under the opt rule, and completeness of Fwith respect to
the class of those where � is opt-limited under the same interpretation.
These two core completeness results carry over to the class of models
where � is also total or reflexive, and to the interpretation under the
max rule. This is made possible by the following “bridge” result:

Theorem 4.16. For every preference model M = (W,�, v) in which
deontic formulas are interpreted under the opt-rule, there is an equiva-
lent preference model M = (W ′,�′, v′) in which �′ is total (and hence
reflexive), and in which deontic formulas are interpreted under the max-
rule (or, equivalently, the opt-rule). Furthermore, if � is opt-limited,
then �′ is max-limited.

Proof. See [Parent, 2015, Theorem 3.3]. I recall the proposed construc-
tion. Starting with M = (W,�, v), one defines M ′ = (W ′,�′, v′) as
follows:

• W ′ = {〈a, n〉 | a ∈W,n ∈ N}
• 〈a, n〉 �′ 〈b,m〉 iff a � b or n ≥ m
• v′(p) = {〈a, n〉 | a ∈ v(p)}

The universe in the output structure is the product set W × N. Thus,
each world a inW has infinitely (albeit countably) many “duplicates” in
W ′. The order relation on the product set is the lexicographic ordering
(or sort of). ≥ is total, and so is �′. Equivalence between models follows
from the fact that the set of optimal elements of X ⊆ W in the input
model “matches” the set of maximal elements of X × N in the output
model, in the sense that:

opt�(X)× N = opt�′(X × N) = max�′(X × N)

This suffices to establish the desired result.
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5 Decidability and automated theorem-proving

5.1 Decidability

The basic result we prove in this section is the decidability of the theo-
remhood problem “Is A a theorem in such-and-such system?” This will
be shown by establishing the so-called finite model property (FMP): any
satisfiable formula is satisfiable in a finite model. To simplify matters,
this property is shown to hold only with respect to models equipped
with a selection function. Decidability of the theoremhood problem in
E, F, F+(CM) and G follows in the usual way. (See [Chellas, 1980].)
The FMP with respect to preference models is put aside.

The FMP with respect to selection function models may be estab-
lished using the filtration method as adapted by Åqvist [1997; 2000] to
a conditional logic setting. I will make a small change to one of his
definitions in order to resolve a problem that was pointed out to me by
Carmo [2009].

As usual, a model M is said to be finite whenever its universe W is
finite. Γ denotes a non-empty and finite set of sentences closed under
sub-formulas. § stands for a designated propositional atom in Γ. Put
> = § → § and ⊥ = ¬>.

For any selection function model M = (W, f, v), the equivalence re-
lation ∼Γ on W is defined by setting

a ∼Γ b iff for every A in Γ : a � A iff b � A

Given a ∈W , [a] will be the equivalence class of a under ∼Γ.

Definition 5.1. Given some Γ, define the translation function τ , taking
every wff into a wff whose propositional atoms are all in Γ, as follows:

τ(p) =
{
p if p ∈ Γ
§ if p 6∈ Γ

τ(¬A) = ¬τ(A) τ(A ∨B) = τ(A) ∨ τ(B)
τ(2A) = 2τ(A) τ(©(B/A)) =©(τ(B)/τ(A))

Since neither > nor ⊥ are primitive symbols, and Γ is non-empty,
there is always one such propositional atom § in Γ.

Lemma 5.2. Let Γ, τ and M be as above. Then, for all wffs A and all
a, b ∈W , if a ∼Γ b, then a � τ(A) iff b � τ(A).
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Proof. By induction on A. If A = p, then either (i) p ∈ Γ or (ii) p 6∈ Γ. In
case (i), τ(p) = p. In case (ii), τ(p) = §. In both cases, the claim holds,
because a ∼Γ b. If A = B ∨ C or A = ¬B, the result follows directly
from the inductive hypothesis. If A = 2B or A = ©(C/B), the result
follows directly from the evaluation rules for 2 and for ©(−/−).

Definition 5.3 (Filtration). The filtration of M = (W, f, v) through Γ
is the model M? = (W ?, f?, v?) where:

(i) W ? = {[a] : a ∈W}
(ii) f?(A) = {[a] : ∃b ∈ [a] & b ∈ f(τ(A))}
(iii) v?(p) = {[a] : a ∈ v(τ(p))} for all p ∈ P.

Fact 5.4. (i) If a ∈W then [a] ∈W ?; (ii) W ? 6= ∅.

Proof. (i) follows from the reflexivity of ∼Γ and Definition 5.3 (i). (ii)
follows from (i) and W 6= ∅.

Fact 5.5. W ? is finite.

Proof. The cardinality of W ? is at most 2n, where n is the cardinality
of Γ.

A comment on f? in Definition 5.3 is in order. It is easy to see that
f? is well-defined, in the sense that its definition does not depend upon
any particular class representative. That is,

Fact 5.6. If a ∼Γ b, then [a] ∈ f?(A)↔ [b] ∈ f?(A).

Proof. Assume a ∼Γ b and [a] ∈ f?(A). It follows that c ∈ f(τ(A)) for
some c ∈ [a]. Since a ∼Γ b, c ∈ [b] too, and thus [b] ∈ f?(A) as required.
For the other direction, the argument is similar.

Åqvist [1997; 2000] uses the following simpler definition:

f?(A) = {[a] : a ∈ f(τ(A))} (1)

Carmo [2009] points out that, if f? is defined as in (1), then Fact 5.6
may fail as shown in the following example.

Example 5.7. Put M = (W, f, v) with W = {a, b}, v(p) = W , and f
such that

f(A) =
{
{a} if a � A

‖A‖M otherwise
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f meets syntax-independence, inclusion, Chernoff, consistency-preser-
vation, Aizerman and Arrow. Let M? = (W ?, f?, v?) be the filtration of
M through Γ = {p}. We have a ∼{p} b. Assume f? is defined as in (1).
We then have [a] ∈ f?(p) and [b] 6∈ f?(p). For f(τ(p)) = f(p) = {a}.

Clause (ii) of Definition 5.3 does not face the above problem. It
remains to verify that the entire proof still goes through.

Theorem 5.8 (Filtration Theorem). Let Γ, τ , M and M? be as above.
Then,

(i) For all wffs A, if A ∈ Γ, then τ(A) = A.
(ii) For all wffs A and all a ∈W :

M?, [a] � A iff M,a � τ(A).

(iii) For all wffs A in Γ and all a ∈W :

M?, [a] � A iff M,a � A.

Proof. (i) and (ii) are established by induction on A, using the relevant
definitions. Clause (iii) is an immediate consequence of (i) and (ii).

For (i), the fact that Γ is closed under subformulas allows us to apply
the inductive hypothesis.

I give the full details for (ii) only, focusing on the cases whereA = 2B
and A = ©(C/B), and assuming for induction that the theorem holds
for B and C.

• A = 2B. From left-to-right, assume [a] � 2B. By the truth-
conditions for 2, we get [b] � B for all [b] in W ?. By the inductive
hypothesis, b � τ(B) for all b in W . Hence a � 2τ(B). By defini-
tion of τ , a � τ(2B) as required. For the converse direction, argue
in reverse.

• A = ©(C/B). From left-to-right, assume [a] � ©(C/B), so that
f?(B) ⊆ ‖C‖M? . By definition of τ , to show that a � τ(©(C/B))
amounts to showing that a � ©(τ(C)/τ(B)). Let b ∈ f(τ(B)).
Since b ∈ [b], [b] ∈ f?(B), by Definition 5.3 (ii). Thus, [b] � C.
By the inductive hypothesis, b � τ(C), which suffices for a �
©(τ(C)/τ(B)). For the other direction, assume a � τ(©(C/B)).
By definition of τ , a �©(τ(C)/τ(B)). Hence f(τ(B)) ⊆ ‖τ(C)‖M .
Let [b] ∈ f?(B). By Definition 5.3 (ii), there is some c ∈ [b] such
that c ∈ f(τ(B)). So, c � τ(C). By Lemma 5.2, b � τ(C). By the
inductive hypothesis, [b] � C, which suffices for [a] �©(C/B).
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Theorem 5.9. Let M? = (W ?, f?, v?) be the filtration of M = (W, f, v)
through Γ. If f meets syntax-independence, inclusion, Chernoff, consis-
tency-preservation, Aizerman or Arrow, then so does f?.

Proof. This is a matter of running through all the conditions, and show-
ing that they are met.

Syntax-independence. Let ‖A‖M? = ‖B‖M? . By Theorem 5.8 (ii),
‖τ(A)‖M = ‖τ(B)‖M . Let [a] ∈ f?(A). By Definition 5.3 (ii), b ∈
f(τ(A)) for some b ∈ [a]. Since f satisfies syntax-independence,
b ∈ f(τ(B)), and hence [a] ∈ f?(B). For the other direction, the
argument is similar.
Inclusion. Suppose that [a] ∈ f?(A). By Definition 5.3 (ii), b ∈
f(τ(A)) for some b ∈ [a]. Since f satisfies inclusion, b � τ(A). By
Lemma 5.2, a � τ(A). By Theorem 5.8 (ii), [a] � A.
Chernoff. Suppose that [a] ∈ f?(A)∩‖B‖M? . By Definition 5.3 (ii),
b ∈ f(τ(A)) for some b ∈ [a]. By Theorem 5.8 (ii), a � τ(B). By
Lemma 5.2, b � τ(B). So, b ∈ f(τ(A))∩ ‖τ(B)‖M . Since f satisfies
Chernoff, b ∈ f(τ(A) ∧ τ(B)). By definition of τ , b ∈ f(τ(A ∧ B)).
By Definition 5.3 (ii), [a] ∈ f?(A ∧B), as required.
Consistency-preservation. Assume ‖A‖M? 6= ∅. Hence, there is
some [a] ∈ W ? such that [a] � A. By Theorem 5.8 (ii), a � τ(A).
Since f satisfies consistency-preservation, there is b ∈W such that
b ∈ f(τ(A)). But b ∈ [b]. By Definition 5.3 (ii), [b] ∈ f?(A). Hence,
f?(A) 6= ∅, as required.
Aizerman. Suppose f?(A) ⊆ ‖B‖M? and [a] ∈ f?(A ∧B). We need
to show that [a] ∈ f?(A). By Definition 5.3 (ii) there is some
b ∈ [a] with b ∈ f(τ(A ∧ B)). We show f(τ(A)) ⊆ ‖τ(B)‖M . Let
c ∈ f(τ(A)). Since c ∈ [c], [c] ∈ f?(A), Definition 5.3 (ii). By the
opening hypothesis, [c] � B. By Theorem 5.8 (ii), c � τ(B), as
required. Since f satisfies Aizerman, f(τ(A ∧ B)) ⊆ f(τ(A)), and
thus b ∈ f(τ(A)), which suffices for [a] ∈ f?(A), Definition 5.3 (ii).
Arrow. Let f?(A) ∩ ‖B‖M? 6= ∅. To show: f?(A ∧ B) ⊆ f?(A) ∩
‖B‖M? . Let [a] ∈ f?(A ∧ B). By Definition 5.3 (ii), there is some
b ∈ [a] with b ∈ f(τ(A ∧ B)). By the opening hypothesis, there
is some [c] ∈ f?(A) with [c] � B. By Definition 5.3 (ii), there is
some d ∈ [c] such that d ∈ f(τ(A)). By Theorem 5.8 (ii), c � τ(B).
By Lemma5.2, d � τ(B). Hence, f(τ(A)) ∩ ‖τ(B)‖M 6= ∅. Since f
meets Arrow, f(τ(A) ∧ τ(B)) ⊆ f(τ(A)) ∩ ‖τ(B)‖M . By definition
of τ , f(τ(A ∧ B)) ⊆ f(τ(A)) ∩ ‖τ(B)‖M . Hence, b ∈ f(τ(A)) and
b ∈ ‖τ(B)‖M . From the former, [a] ∈ f?(A), Definition 5.3 (ii).
From the latter, a ∈ ‖τ(B)‖M , by Lemma 5.2. It follows that

44



Preference Semantics for Hansson-type Dyadic Deontic Logic

[a] � B, Theorem 5.8 (ii). Thus, f?(A ∧ B) ⊆ f?(A) ∩ ‖B‖M? , as
required.

Theorem 5.10. The FMP holds with respect to the following classes of
selection function models:

(i) the class of those in which f meets syntax-independence, inclusion
and Chernoff;

(ii) the class of those in which f meets syntax-independence, inclusion,
Chernoff, and consistency-preservation;

(iii) the class of those in which f meets syntax-independence, inclusion
Chernoff, consistency-preservation, and Aizerman;

(iv) the class of those in which f meets syntax-independence, inclusion,
Chernoff, consistency-preservation, and Arrow.

Proof. For (i). Suppose A is satisfiable in some selection function model
M = (W, f, v) in which fmeets syntax-independence, inclusion and Cher-
noff. Thus, there is a world a ∈ W such that M,a � A. Consider the
filtration M? = (W ?, f?, v?) of M through the set Γ of all the sub-
formulas of A. By Fact 5.4 (i), [a] ∈ W ?. By Fact 5.5, W ? is finite.
By Theorem 5.9, f? meets syntax-independence, inclusion and Chernoff.
Furthermore, A ∈ Γ. By Theorem 5.8 (iii), M?, [a] � A. Thus, A is
satisfiable in a finite model of the appropriate kind.

For (ii)-(iv), the argument is similar. Details are omitted.

Since E, F, F+(CM), and G are finitely axiomatized, one gets the
following spin-off result:

Corollary 5.11. The theoremhood problem (“Is A a theorem?”) in E,
F, F+(CM) and G is decidable.

Proof. The argument is standard (see, e.g., [Chellas, 1980]).

The FMP w.r.t. selection functions is enough to establish the decid-
ability of the theoremhood problem. The question of whether the FMP
also holds w.r.t. preference models has an interest in its own right. It is
left as a topic for future research.

5.2 Automated theorem proving

This section describes work by [Benzmüller et al., 2019] in automated
theorem proving (ATP) for the family of logics discussed in this chapter.
Readers who are not interested in automated reasoning can skip this
section and go to Section 6.
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A specific method called Shallow Semantical Embedding (SSE) is
used. The key idea is to use classical higher-order logic (HOL), i.e.,
Church’s type theory [Benzmüller and Andrews, 2019], as a meta-logic
in order to represent and model the syntactic and semantic elements of
a specific source logic. One can then use off-the-shelf HOL theorem-
provers like Isabelle/HOL [Nipkow et al., 2002] or Leo-III [Steen and
Benzmüller, 2018; Steen, 2018] for automation. The method was suc-
cessfully applied to a wide range of non-classical and modal logics−for an
overview, see [Benzmüller, 2019] and the references therein. The scope of
application of the method has recently been extended to include various
prominent deontic logics, including Åqvist’s system E.17 The authors
focus on the case where deontic formulas are interpreted using the opt
rule. It is a straightforward matter to extend the approach to the case
where they are interpreted using the max rule, or even an evaluation rule
other than one in terms of best, like one of those discussed in Section 6.

In this section I will only briefly describe this work, omitting most of
the formal details and proofs, which can be found in the aforementioned
paper. The method can be seen as a variant of the so-called standard
translation from modal logic to first-order logic [Blackburn et al., 2001].
Possible worlds and propositional letters become individuals and unary
predicates, respectively. A distinguished binary predicate symbol r is
added to the language of HOL to represent the betterness relation. The
modalities are handled by explicit quantification over the set of individ-
uals. One “mimics” the evaluation rules used when evaluating the truth
of formulas in a preference model. For example, 2A translates into:

λx.∀y.Ay

And ©(B/A) translates into:

λx (∀y(Ay ∧ (∀z(Az → ryz))→ By))

This translation holds for the interpretation under the opt rule.
On the HOL side, the following two primitive types are used: i for

individuals (or possible worlds); o for the Boolean values. A variant
of the standard semantics is used. It is called “generalized” or (after
its inventor) “Henkin” semantics. This variant semantics leads to an
axiomatizable version of higher-order logic, because the set of functions
in a given model need not be complete. (See [Henkin, 1950].)

17This is part of a larger project, which aims at mechanizing and automating deon-
tic reasoning. The study [Benzmüller et al., 2020] gives an overview of the project, and
documents further the other deontic frameworks covered so far by the SSE method.
The Isabelle/HOL theory files are available at www.logikey.org.
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When working out the formal details, there are three main steps to
follow. The first step is to specify an embedding d·e, which translates a
formula A of E into a term dAe of HOL. As mentioned, the clauses of
the definition of d·e mirror the evaluation rules used in the semantics
of E. The second step is to establish that the embedding is sound and
complete, that is faithful, in the sense that it preserves both the validity
and invalidity of formulas. The establishment of such a result is the
main criterion of success. This is Theorem 5.12 below. Intuitively it tells
us that under the opt rule a formula A in the language of E is valid
in the class of all preference models (notation: |= A) if and only if the
HOL formula ∀x.dAex is a tautology in every Henkin model (notation:
|=HOL ∀x.dAex).

Theorem 5.12 (Faithfulness of the embedding, [Benzmüller et al.,
2019]).

|= A if and only if |=HOL ∀x.dAex

Proof. This is [Benzmüller et al., 2019, Theorem 2]. The crux of the
argument consists in relating preference models with Henkin models in
a truth-preserving way.

The third and last step consists in encoding the embedding in a con-
crete theorem-prover like Isabelle/HOL [Nipkow et al., 2002]. Figure 7
displays the encoding obtained for E. Some explanations are in order.
On line 5, a designated constant “aw” for the actual world is introduced.
On lines 28–31, this constant is used to distinguish between global valid-
ity (i.e., truth in all worlds) and local validity (i.e., truth at the actual
world). On lines 19–26, the dyadic deontic operators are defined by
introducing first the notion of optimal A-world.

Here is a (non-exhaustive) list of queries that can be run:

• Satisfiability: Is the (finite) set Γ of formulas satisfiable?
• Validity: Is formula A valid? Does inference rule R preserve global

validity?
• Entailment: Does A follow from Γ (with Γ finite)?
• Correspondance: Is such-and-such property of the betterness re-

lation sufficient to validate A? Is such-and-such property of the
betterness relation necessary to validate A?

When the answer is “no” the model finder Nitpick [Blanchette and Nip-
kow, 2010] is able to give a counter-example. Similarly, when a formula
(or a set of formulas) is satisfiable, Nitpick is able to give a model and
a world satisfying the formula (or set of formulas) in question.
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Figure 7: Encoding of system E in Isabelle/HOL.

Theorem provers for KLM-style nonmonotonic and conditional log-
ics have been developed, like, e.g., KLMLean 1.0 [Olivetti and Pozzato,
2005], KLM 2.0 [Giordano et al., 2007] and Nescond [Olivetti and Poz-
zato, 2014]. It would be interesting to compare them with the one de-
scribed here.

6 Alternative truth-conditions

Despite its length, the chapter does not purport to give an encyclope-
dic coverage of the field. In this section, I discuss two variant truth-
conditions for the conditional obligation operator. As mentioned in the
introductory section, more variations are possible. For details, the read-
ers are referred to [Makinson, 1993; Goble, 2015] and references therein.
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6.1 The Danielsson-van Fraassen-Lewis truth-conditions

These truth-conditions for deontic sentences are named by Åqvist [1987,
p. 199] after their co-inventors: Danielsson [1968], van Fraassen [1972]
and Lewis [1973]. One counts ©(B/A) as true in a world a whenever
either there are no A-worlds, or there is some A ∧B-world b such that,
as we go up in the ordering, the material implication A → B always
holds. Hence, all worlds ranked as high as b comply with the obligation
in question. This evaluation rule is also used by van Kutschera [1974],
Loewer and Belzer [1983] and Goble [2003], among others.

Definition 6.1 (∃∀ rule). Given a preference model M = (W,�, V ) and
a world a ∈W , we have

M,a �©(B/A) iff ¬∃b (b |= A) or
∃b (b |= A ∧B & ∀c (c � b⇒ c |= A→ B))

(∃∀)

I shall refer to the statement appearing at the right-hand-side of
“iff” as the ∃∀ rule. Lewis’s preference for the ∃∀ rule is based on his
rejection of the limit assumption [1973, p. 98]. The ∃∀ rule handles in-
finitely ascending chains better than the Hanssonian-type rule in terms
of best worlds. Indeed when the A-worlds form an infinitely ascend-
ing chain (so that there is no best A-world) under the second rule the
formula ©(B/A) (where B is an arbitrarily chosen formula) becomes
(vacuously) true. Thus, when the limit assumption fails, everything is
obligatory. With the ∃∀ rule, this is not the case.18

Leaving the above issue aside, I now clarify how the ∃∀ rule relates
with the opt rule and the max rule.

Theorem 6.2.
(i) The ∃∀ rule implies the opt rule;
(ii) Given totalness of �, the ∃∀ rule implies the max rule.

Proof. (ii) follows from (i). To show (i), suppose©(B/A) holds at world
a in virtue of the ∃∀ rule. This means that either ¬∃b (b |= A) or
∃b (b |= A ∧B & ∀c (c � b⇒ c |= A→ B)). In the first case, we have
opt�(‖A‖) = ∅, and so opt�(‖A‖) ⊆ ‖B‖. In the second case, consider
some d ∈ opt�(‖A‖). We have d � b and d |= A. So d |= B, which
suffices for opt�(‖A‖) ⊆ ‖B‖ as required.

18Goble’s own motivation for using the ∃∀ rule is different. It is not directly related
to the limit assumption but to the wish to accommodate conflicts between obligations
(see infra).
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Theorem 6.3.
(i) Given transitivity and opt-limitedness of �, the opt rule implies

the ∃∀ rule;
(ii) Given transitivity and max-limitedness of �, the max rule implies

the ∃∀ rule.

Proof. For (i), assume opt�(‖A‖) ⊆ ‖B‖. Either (a) opt�(‖A‖) = ∅,
or (b) opt�(‖A‖) 6= ∅. In case (a), by opt-limitedness, ‖A‖ = ∅, and
so the ∃∀ rule is verified. In case (b), there is some b such that b ∈
opt�(‖A‖). We have b |= B, by the opening assumption. Let c be such
that c � b and c |= A. Consider any d such that d |= A. We have b � d.
By transitivity, we then get c � d, so that c ∈ opt�(‖A‖), and hence
c |= B, by the opening assumption. Thus, the ∃∀ rule is verified too.

For (ii), the argument is similar.

The question arises as to how to axiomatize the set of valid formulas
for the interpretation under the ∃∀ rule. This question was resolved very
early by Lewis and van Fraassen in the case of total orders. Below I
recast their result in terms of the systems studied in this chapter. As
with Lewis’s and van Fraassen’s settings, the limit assumption has no
impact.

Theorem 6.4. Under the ∃∀ rule, G is sound with respect to:
(i) the class of models in which � is transitive and total (and hence

reflexive); and
(ii) the class of models in which � is transitive, total and opt/max-

limited (or opt/max-smooth).

Proof. In the presence of transitivity and totalness, opt-limitedness,
max-limitedness, opt-smoothness and max-smoothness coincide. All
that is required is to show that each axiom of G is valid in the class
of models in which � is transitive and total, and that the inference rules
of G preserve validity in this class of models. The argument is routine,
and left to the reader. The arguments for (Abs), (Nec), (Ext), (Id) and
(Sh) do not call for any of the properties of �. (D?) calls for totalness.
(Sp) calls for transitivity. (COK) and (CM) call for both totalness and
transitivity. For the reader’s convenience, I recap these points in the
form of a table, Table 5.

Completeness can be derived from the completeness of G under the
interpretation applying the opt rule, with respect to the class of models
in which � is transitive, total and opt-limited.
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Axiom of G Property (or pair of properties) of �
(D?) totalness
(Sp) transitivity
(COK) transitivity and totalness
(CM) transitivity and totalness

Table 5: Axioms and properties under the ∃∀ rule

Theorem 6.5. Under the ∃∀ rule, G is complete with respect to:
(i) the class of models in which � is transitive and total; and
(ii) the class of models in which � is transitive, total and opt-limited

( resp. max-limited, opt-smooth and max-smooth).

Proof. Suppose that Γ 6`G A. By completeness under the opt rule with
respect to the class of models in which � is transitive, total and opt-
limited, Γ 6|= A over that class of models. By Theorems 6.2 and 6.3,
under the ∃∀ rule Γ 6|= A over the class of models in which � is transitive,
total and opt-limited. Given transitivity and totalness, opt-limitedness,
max-limitedness, opt-smoothness and max-smoothness coincide. This
establishes (ii). Deleting a constraint on � does not increase the set of
semantical consequences. This establishes (i).

Goble [2003] must be given credit for providing an axiomatization
called DP in the case of partial orders. In the absence of totalness, (D?),
which rules out the possibility of conflicting obligations, goes away. The
choice of partial orders may thus be motivated by the need to accom-
modate conflicts between obligations, these being commonplace.19 Note
that (COK) and (CM) also go away while (Sp) remains. DP is a “pure”
deontic logic: its language has no other primitive modal operator than
©(−/−). Furthermore, its semantics uses a betterness relation relativized
to worlds, and the truth-conditions make the obligation false when the
antecedent is impossible. The proof of completeness for DP given by
Goble takes a detour through an alternative semantics in terms of mul-
tiple preference models. The question as to whether the proof of com-

19Here lies Goble’s reason for using the ∃∀ rule. With the Hanssonian sort of
interpretation, one needs to work with models without the limit assumption ; such
models correspond to system E. However, E contains the following principle of “de-
ontic explosion”, ©(B/A) ∧ ©(¬B/A) → ©(C/A), which says that if there is any
instance of a deontic dilemma then everything is obligatory. (This is similar to the
point made above in relation to the limit assumption, page 49). A survey of the state
of the art regarding the treatment of conflicts between obligations may be found in
[Goble, 2013].
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pleteness for DP can be adapted to the present setting is left as a topic
for future research. Furthermore, one would like to know what happens
within this set-up when transitivity goes away. The question of how to
axiomatize the corresponding logic is left as a topic for future research
too.

6.2 The Burgess-Boutilier-Lamarre truth-conditions

The evaluation rule used by Burgess [1981], Boutilier [1994] and oth-
ers has a “∀∃∀” structure. This alternative evaluation rule has two
technical attractions. First, as noted by Boutilier and independently by
Lamarre [1991], it permits the reduction of the dyadic obligation opera-
tor to a monadic modal operator. Second, as mentioned by Lewis [1981,
p. 230], it enables one to have a fairly strong dyadic deontic logic with-
out committing to either a form of the limit assumption or totalness for
�. Makinson [1993, p. 346] gives a similar motivation. We see a sim-
ilar rule in the Kratzer semantics for conditionals (see Kratzer [1991,
Definition 13]) and in Veltman [1985]’s logic for conditionals.

Definition 6.6 (∀∃∀ rule). Given a preference model M , and some
world a in M , we have

a �©(B/A) iff ∀b if b |= A then
∃c s.t. c � b & c |= A &

∀d (d � c ⇒ d |= A→ B)
(∀∃∀)

I will refer to the statement at the right-hand side of “iff” as the ∀∃∀
rule. I just described this rule as a way to avoid commitment to totalness
for �. This was Lewis’s primary motivation. (See also [Kaufmann, 2017,
§3].) It is worth mentioning that this benefit comes with a cost: (RM)
goes away, while (D?) remains. The argument for (D?) is part of the
proof of Theorem 6.10 below. I show the failure of (RM).

Observation 6.7. There is a preference model M = (W,�, v), with �
reflexive and transitive, in which (RM) fails under the ∀∃∀ rule.

Proof. Put M = (W,�, v), with W = {a, b, c}, � the reflexive closure
of {(b, a), (c, c)} and v(p) = W , v(q) = {b, c} and v(r) = {a, c}. This is
shown in Figure 8, where reflexivity is left implicit. In this model, � is
(vacuously) transitive. We have:

• a |=©(q/p)
• a |= ¬© (¬r/p) (witness: c)
• a 6|=©(q/p ∧ r) (witness: a)
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Figure 8: A countermodel to (RM) under the ∀∃∀ rule

Theorem 6.8 clarifies how the ∀∃∀ rule relates with the ∃∀ rule.

Theorem 6.8.
(i) Given reflexivity of �, the ∀∃∀ rule implies the ∃∀ rule;
(ii) Given both transitivity and totalness of �, the ∃∀ rule implies the
∀∃∀ rule.

Proof. For (i), suppose the ∀∃∀ rule holds, but not the ∃∀ rule. Hence,
there is some b1 such that b1 |= A and

∀b (b |= A ∧B ⇒ ∃c (c � b & c |= A & c 6|= B)) (α1)

By the ∀∃∀ rule, there is some c1 such that c1 � b1, c1 |= A and

∀d (d � c1 ⇒ d |= A→ B) (α2)

By reflexivity, c1 � c1, and so c1 |= B. By (α1), there is some d1 such
that d1 � c1, d1 |= A and d1 6|= B. This contradicts (α2).

For (ii), suppose the ∃∀ rule holds, but not the ∀∃∀ rule. From the
latter, there is some b1 such that b1 |= A and

∀c (c � b1 & c |= A ⇒ ∃d (d � c & d |= A & d 6|= B)) (β1)

For the ∃∀ rule to hold, it must be the case that there is some b2 such
that b2 |= A ∧B and

∀c (c � b2 ⇒ c |= A→ B) (β2)

By totalness, either (a) b1 � b2 or (b) b2 � b1. In case (a), (β2) yields
b1 |= A → B. By reflexivity of �, b1 � b1. By (β1), there is some d1
such that d1 � b1, d1 |= A and d1 6|= B. By transitivity, d1 � b2, and
so by (β2), d1 |= A → B, a contradiction. In case (b), (β1) yields that
there is some d1 such that d1 � b2 and d1 |= A and d1 6|= B, a result
that immediately contradicts (β2).

It is noteworthy that, in the presence of the limit assumption, the
∀∃∀ rule coincides with the max rule.
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Theorem 6.9.
(i) The ∀∃∀ rule implies the max rule;
(ii) Given reflexivity, transitivity and max-smoothness of �, the max

rule implies the ∀∃∀ rule.

Proof. For (i), suppose the ∀∃∀ rule holds, and let b ∈ max�(‖A‖).
Since b |= A, there is some c such that c � b, c |= A and

∀d (d � c ⇒ d |= A→ B) (γ1)

Since b ∈ max�(‖A‖), b � c. (γ1) then yields b |= B, which suffices for
max�(‖A‖) ⊆ ‖B‖.

For (ii), suppose the max rule holds, and let b be such that b |= A.
By max-smoothness either (a) b ∈ max�(‖A‖) or (b) there is c such that
c � b and c ∈ max�(‖A‖). Suppose (a) applies. By reflexivity, b � b.
Also b |= A. Let c be such that c � b and c |= A. Let d be such that
d � c and d |= A. By transitivity of �, d � b. By maximality of b,
b � d. By transitivity of � again, c � d. Hence, c ∈ max�(‖A‖). It
then follows that c |= B as required. The argument for (b) is similar,
working with c instead of b.

Theorem 6.10. Under the ∀∃∀ rule, F+(CM) is sound with respect to
the class of models in which � is reflexive and transitive.

Proof. This is just a matter of verifying that the axioms of F+(CM)
are valid. (Ext) and (Abs) hold independently of the reflexivity and
transitivity of �. (Nec), (Id) and (D?) each call for the reflexivity of
�. (CM) and (COK) call for transitivity of �, while (Sh) calls for both
transitivity and reflexivity. For the reader’s convenience, I recap these
points in the form of a table, Table 6. I give the argument for (D?)and
(CM) only.

For (D?), suppose (i) a |= 3A and (ii) a |= ©(B/A). To show:
a |= P (B/A), i.e., a 6|= ©(¬B/A). From (i), there is some b be such
that b |= A. Let c be such that c � b and c |= A. From (ii), there is
some d � c such that d |= A and

∀e (e � d ⇒ e |= A→ B) (δ1)

By reflexivity, d � d, and hence by (δ1) d |= B, i.e., d 6|= ¬B. Hence,
a 6|=©(¬B/A) as required.

For (CM), suppose (i) a |= ©(B/A) and (ii) a |= ©(C/A). Let b1
be such that b1 |= A∧B. By (i), there is some b2 � b1 such that b2 |= A
and

∀c (c � b2 ⇒ c |= A→ B) (δ2)
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By (ii), there is some b3 � b2 such that b3 |= A and

∀c (c � b3 ⇒ c |= A→ C) (δ3)

By (δ2), b3 |= B and hence b3 |= A ∧ B. By transitivity of �, b3 � b1.
Let d be such that d � b3 and d |= A ∧ B. Obviously, d |= A. By (δ3),
d |= C, which suffices for a |=©(C/A ∧B).

Axiom of F+(CM) Property (or pair of properties) of �
(Nec) reflexivity
(Id) reflexivity
(D?) reflexivity
(CM) transitivity
(COK) transitivity
(Sh) reflexivity and transitivity

Table 6: Axioms and properties under the ∀∃∀ rule

Theorem 6.11. Under the ∀∃∀ rule, F+(CM) is complete with respect
to the class of models in which � is reflexive and transitive.

Proof. Suppose Γ 6`F+(CM) A. By Theorem 4.5 (ii), for the interpreta-
tion under the max rule we have that Γ 6|= A over the class of models
in which � is reflexive, transitive and max-smooth. By Theorem 6.9,
the observation that Γ 6|= A over the class of models in which � is
reflexive, transitive and max-smooth carries over to the interpretation
under the ∀∃∀ rule. That Γ 6|= A continues to apply, mutatis mutan-
dis, with respect to the class of models in which � is only reflexive and
transitive.

As with the ∃∀ rule, the limit assumption has no impact.

Corollary 6.12. Under the ∀∃∀ rule, F+(CM) is sound and complete
with respect to the class of models in which � is reflexive, transitive and
max-smooth ( resp. max-limited).

Proof. Soundness follows from the fact that no axiom requires max-
smoothness or max-limitedness. Completeness with respect to the class
of models with max-smoothness has just been established as part of the
proof of Theorem 6.11. Completeness with respect to the class of models
with max-limitedness follows from this and Observation 2.8 (a) (i).
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It should be pointed out that Theorem 6.11 echoes the axiomatiza-
tion result obtained by Goble [2014] for the Kratzer conditional.

I end this section by showing that the assumption of totalness boosts
the logic from F+(CM) to G.

Theorem 6.13. Under the ∀∃∀ rule, G is sound and complete with
respect to:
(i) the class of models in which � is transitive and total (and hence

reflexive); and
(ii) the class of models in which � is transitive, total and max-limited

( resp. max-smooth, opt-limited and opt-smooth).

Proof. For soundness, it suffices to verify that (Sp) holds is valid when
� is required to be total. Consider a model M and a world a in M such
that (i) a |= P (B/A), (ii) a |=©(B → C/A) and (iii) a 6|=©(C/A∧B).
From (iii), there is some b1 such that b1 |= A ∧B and

∀c
(
(c � b1 & c |= A ∧B) ⇒ ∃d (d � c & d |= A ∧B & d 6|= C)

)
(ε1)

From (ii), there is some b2 � b1 with b2 |= A and

∀c (c � b2 ⇒ c |= A→ (B → C)) (ε2)

From (i), there is some b3 such that b3 |= A and

∀c
(
(c � b3 & c |= A) ⇒ ∃d (d � c & d |= A ∧B)

)
(ε3)

By totalness, either (1) b2 � b3 or (2) b3 � b2. We argue that, in both
cases, there is some b4 with b4 � b2 and b4 |= A ∧ B. In case (1), (ε3)
immediately yields this result. In case (2), b3 � b3 by reflexivity, and
so (ε3) tells us that there is some b4 with b4 � b3 and b4 |= A ∧ B. By
transitivity, b4 � b2. Thus, either way, there is some b4 with b4 � b2
and b4 |= A ∧ B. By transitivity, b4 � b1. (ε1) then yields that there is
some b5 with b5 � b4 and b5 |= A ∧B ∧ ¬C. This contradicts (ε2), since
b5 � b2, by transitivity.

Completeness follows at once from Theorems 6.5 and 6.8.

7 Conclusion
The chapter has provided a survey of results related to the meta-theory
of dyadic deontic logics in Hansson’s tradition, focusing on axiomatiza-
tion issues. The goal was to provide a “roadmap” of the different systems
that can be obtained, depending on the special properties envisaged for
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the betterness relation, and depending on whether “best” means “opti-
mal” or “maximal”. Four systems of increasing strength were discussed,
and related to (combinations of) properties of the betterness relation.
The most remarkable finding in this study is that the contrast between
the two notions of “best” is not as significant as one may think,20 be-
cause in an appreciable number of cases the determined logic remains
the same no matter which definition is used. Another unexpected out-
come is that an apparently strong condition like totalness (and also,
sometimes, transitivity) is somewhat idle, because in quite a number of
cases its imposition does not affect the logic.

At least two qualifications of these findings are worth noting. First,
we have noticed an asymmetry between maximality and optimality in
two cases, when transitivity interacts with totalness (and smoothness),
and when transitivity is considered alone. The latter case is not fully
understood yet because no completeness result for optimality has been
reported. Second, the correlations between the properties of the bet-
terness relation and the axioms are not the same when variant truth-
conditions for the conditional are used in order to circumvent the limit
assumption. Two such variant truth-conditions are the ∃∀ rule and the
∀∃∀ rule. Under the former a completeness theorem is available for mod-
els with a transitive and total relation, and under the latter for models
with a reflexive and transitive relation. But we still do not know the full
picture. In particular it is not known what happens when transitivity
goes away.

For the sake of exhaustiveness, decidability of the theoremhood prob-
lem and automated theorem-proving were also discussed. The decidabil-
ity of the theoremhood problem in the four proof systems studied in this
chapter was established, by taking a detour through a modeling in terms
of a selection function. Reasoning tasks were automated via a faithful
embedding into HOL. These topics have an interest in their own right.
However no deeper insight on the above issues was gained. Looking at
computational complexity is a natural next step.

References

[Alchourrón, 1993] C. Alchourrón. Philosophical foundations of deontic logic
and the logic of defeasible conditionals. In J.-J.Ch. Meyer and R.J. Wieringa,

20Bossert and Suzumara (personal communication) reached a similar conclusion
within the framework of rational choice theory (cf. [Bossert and Suzumura, 2010,
chapter 3].

57



Parent

editors, Deontic Logic in Computer Science, pages 43–84. JohnWiley & Sons,
Inc., New York, 1993.

[Alchourrón, 1995] C. Alchourrón. Defeasible logic: demarcation and affinities.
In G. Crocco, L. Fariñas del Cerro, and A. Herzig, editors, Conditionals:
From Philosophy to Computer Science, pages 67–102. Oxford University
Press, Oxford, 1995.

[Åqvist, 1987] L. Åqvist. An Introduction to Deontic logic and the Theory of
Normative Systems. Bibliopolis, Naples, 1987.

[Åqvist, 1993] L. Åqvist. A completeness theorem in deontic logic with sys-
tematic frame constants. Logique & Analyse, 36(141-142):177–192, 1993.

[Åqvist, 1997] L. Åqvist. On certain extensions of von Kutschera’s preference-
based dyadic deontic logic. In W. Lenzen, editor, Das weite Spektrum der
analytischen Philosophie: Festschrift fur Franz von Kutschera, pages 8–23.
Walter de Gruyter, Berlin, New York, 1997.

[Åqvist, 2000] L. Åqvist. Three characterizability problems in deontic logic. In
R. Demolombe and R. Hilpinen, editors, Proceedings of the 5th International
Workshop on Deontic Logic In Computer Science (∆EON’00), pages 16–41.
ONERA-DGA, 2000.

[Åqvist, 2002] L. Åqvist. Deontic logic. In D. Gabbay and F. Guenthner, ed-
itors, Handbook of Philosophical Logic, volume 8, pages 147–264. Kluwer
Academic Publishers, Dordrecht, Holland, 2nd edition, 2002. Originally pub-
lished in [Gabbay and Guenthner, 1984, pp. 605–714].

[Asher and Bonevac, 1997] N. Asher and D. Bonevac. Common sense obliga-
tion. In Nute [1997], pages 159–203.

[Benzmüller and Andrews, 2019] C. Benzmüller and P. Andrews. Church’s
type theory. In E. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, summer 2019 edition, 2019.
https://plato.stanford.edu/entries/type-theory-church/.

[Benzmüller et al., 2019] C. Benzmüller, A. Farjami, and X. Parent. Åqvist’s
dyadic deontic logic E in HOL. Journal of Applied Logics–IfCoLog, 6:715–
732, 2019.

[Benzmüller et al., 2020] C. Benzmüller, X. Parent, and L. van der Torre. De-
signing normative theories of ethical reasoning: LogiKEy formal framework,
methodology, and tool support. Artificial Intelligence, 287:103348, 2020.

[Benzmüller, 2019] C. Benzmüller. Universal (meta-)logical reasoning: Recent
successes. Science of Computer Programming, 172:48–62, 2019.

[Blackburn et al., 2001] P. Blackburn, M. de Rijke, and Y. de Venema. Modal
Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 2001.

[Blanchette and Nipkow, 2010] J. C. Blanchette and T. Nipkow. Nitpick: A
counterexample generator for higher-order logic based on a relational model
finder. In M. Kaufmann and L. C. Paulson, editors, Interactive Theorem
Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11-
14, 2010. Proceedings, volume 6172 of Lecture Notes in Computer Science,

58

https://plato.stanford.edu/entries/type-theory-church/


Preference Semantics for Hansson-type Dyadic Deontic Logic

pages 131–146. Springer, 2010.
[Bossert and Suzumura, 2010] W. Bossert and K. Suzumura. Consistency,

Choice, and Rationality. Harvard University Press, Cambridge, 2010.
[Boutilier, 1994] G. Boutilier. Toward a logic for qualitative decision theory.

In J. Doyle, E. Sandewall, and P. Torasso, editors, Proceedings of the 4th In-
ternational Conference on Principles of Knowledge Representation and Rea-
soning (KR-94), pages 75–86. Morgan Kaufman, Bonn, 1994.

[Burgess, 1981] J. P. Burgess. Quick completeness proofs for some logics of
conditionals. Notre Dame J. Formal Logic, 22(1):76–84, 1981.

[Carmo, 2009] J. Carmo. Private communication, 2009.
[Chellas, 1975] B. Chellas. Basic conditional logic. Journal of Philosophical

Logic, 4(2):133–153, 1975.
[Chellas, 1980] B. Chellas. Modal Logic. Cambridge University Press, Cam-

bridge, 1980.
[Chernoff, 1954] H. Chernoff. Rational selection of decision functions. Econo-

metrica, 22(4):422–443, 1954.
[Chisholm, 1963] R. Chisholm. Contrary-to-duty imperatives and deontic logic.

Analysis, 24:33–36, 1963.
[Danielsson, 1968] S. Danielsson. Preference and Obligation, Studies in the

Logic of Ethics. Filosofiska Färeningen, 1968.
[Fehige, 1994] C. Fehige. The limit assumption in deontic (and prohairetic)

logic. In G. Meggle and U. Wessels, editors, Analyomen 1, pages 42–56. De
Gruyter, Berlin, 1994.

[Gabbay and Guenthner, 1984] D. Gabbay and F. Guenthner, editors. Hand-
book of Philosophical Logic, volume II. Reidel, Dordrecht, Holland, 1st edi-
tion, 1984.

[Gabbay et al., 2013] D. Gabbay, J. Horty, X. Parent, R. van der Meyden, and
L. van der Torre, editors. Handbook of Deontic Logic and Normative Systems,
volume 1. College Publications, London, 2013.

[Giordano et al., 2007] L. Giordano, V. Gliozzi, and G. L. Pozzato. KLM-
Lean 2.0: A theorem prover for KLM logics of nonmonotonic reasoning. In
N. Olivetti, editor, Automated Reasoning with Analytic Tableaux and Related
Methods, pages 238–244, Berlin, Heidelberg, 2007. Springer.

[Goble, 2003] L. Goble. Preference semantics for deontic logics. Part I: Simple
models. Logique & Analyse, 46(183-184):383–418, 2003.

[Goble, 2013] L. Goble. Prima facie norms, normative conflicts and dilemmas.
In Gabbay et al. [2013], pages 241–352.

[Goble, 2014] L. Goble. Further notes on Kratzer semantics for modality, with
application to dyadic deontic logic, 2014. Unpublished.

[Goble, 2015] L. Goble. Models for dyadic deontic logics, 2015. Unpublished
(version dated 8 October 2015).

[Goble, 2019] L. Goble. Axioms for Hansson’s dyadic deontic logics. Filosofiska
Notiser, 6(1):13–61, 2019.

59



Parent

[Goldman, 1977] H. Goldman. David Lewis’s semantics for deontic logic. Mind,
86(342):242–248, 1977.

[Hansen, 1998] J. Hansen. Notes to my DEON’98 contribution, 1998. Available
on-line at the address: http://www.hh.shuttle.de/win/Joerg.Hansen/
Deontic.html (this document was initially distributed at the DEON con-
ference held in Bologna in 1998, where a first version of [Hansen, 1999] was
presented).

[Hansen, 1999] J. Hansen. On relations between Åqvist’s deontic system G and
van Eck’s deontic temporal logic. In P. Mc Namara and H. Prakken, editors,
Norms, Logics and Information Systems, Frontiers in Artificial Intelligence
and Applications, pages 127–144. IOS Press, Amsterdam, 1999.

[Hansen, 2005] J. Hansen. Conflicting imperatives and dyadic deontic logic.
Journal of Applied Logic, 3(3-4):484–511, 2005.

[Hanson, 1965] W. H. Hanson. Semantics for deontic logic. Logique & Analyse,
8:177–190, 1965.

[Hansson, 1969] B. Hansson. An analysis of some deontic logics. Noûs,
3(4):373–398, 1969. Reprinted in [Hilpinen, 1971, pp. 121-147].

[Hansson, 1968] B. Hansson. Choice structures and preference relations. Syn-
these, 18(4):443–458, 1968.

[Hansson, 2009] S.O. Hansson. Preference-based choice functions: a generalized
approach. Synthese, 157, 2009.

[Henkin, 1950] L. Henkin. Completeness in the theory of types. Journal of
Symbolic Logic, 15(2):81–91, 06 1950.

[Herzberger, 1973] H. Herzberger. Ordinal preference and rational choice.
Econometrica, 41(2):187–237, 1973.

[Hilpinen and McNamara, 2013] R. Hilpinen and P. McNamara. Deontic logic:
a historical survey and introduction. In Gabbay et al. [2013], pages 3–136.

[Hilpinen, 1971] R. Hilpinen, editor. Deontic Logic: Introductory and System-
atic Readings. Reidel, Dordrecht, 1971.

[Hilpinen, 2001] R. Hilpinen. Deontic logic. In L. Goble, editor, The Blackwell
Guide to Philosophical Logic, pages 159–182. Blackwell Publishers, Malden,
2001.

[Horty, 2001] J. Horty. Agency and Deontic Logic. Oxford University Press,
New York, 2001.

[Horty, 2014] J. Horty. Deontic modals: Why abandon the classical semantics?
Pacific Philosophical Quarterly, 95(4):424–460, 2014.

[Jackson, 1985] F. Jackson. On the semantics and logic of obligation. Mind,
94(374):177–195, 1985.

[Kaufmann, 2017] S. Kaufmann. The limit assumption. Semantics and Prag-
matics, 10:1–29, 2017.

[Kratzer, 1991] A. Kratzer. Modality. In A. von Stechow and D. Wunderlich,
editors, Semantics: An International Handbook of Contemporary Research,
page 639–650. De Gruyter, Berlin, summer 2019 edition, 1991.

60

http://www.hh.shuttle.de/win/Joerg.Hansen/Deontic.html
http://www.hh.shuttle.de/win/Joerg.Hansen/Deontic.html


Preference Semantics for Hansson-type Dyadic Deontic Logic

[Kratzer, 2012] A. Kratzer. The notional category of modality. In A. Kratzer,
editor, Modals and Conditionals, pages 27–69. Oxford University Press, 2012.

[Kraus et al., 1990] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial Intelligence,
44(1-2):167–207, 1990.

[Lamarre, 1991] P. Lamarre. S4 as the conditional logic of nonmonotonic-
ity. In Proceedings of the Second International Conference on Principles
of Knowledge Representation and Reasoning, pages 357–367. Morgan Kauf-
mann, 1991.

[Lehmann and Magidor, 1992] D. Lehmann and M. Magidor. What does a
conditional knowledge base entail? Artificial Intelligence, 55(1):1–60, 1992.

[Lewis, 1973] D. Lewis. Counterfactuals. Blackwell, Oxford, 1973.
[Lewis, 1974] D. Lewis. Semantic analyses for dyadic deontic logic. In S. Sten-

lund, A.-M. Henschen-Dahlquist, L. Lindahl, L. Nordenfelt, and J. Odelstad,
editors, Logical Theory and Semantic Analysis, volume 63 of Synthese Li-
brary, pages 1–14. Springer, Netherlands, 1974.

[Lewis, 1981] D. Lewis. Ordering semantics and premise semantics for coun-
terfactuals. Journal of Philosophical Logic, 10:217–234, 1981.

[Lindström, 1991] S. Lindström. A semantical approach to nonmonotonic rea-
soning, 1991. Uppsala Prints and Preprints in Philosophy, Department of
Philosophy, University of Uppsala.

[Loewer and Belzer, 1983] B. Loewer and M. Belzer. Dyadic deontic detach-
ment. Synthese, 54:295–318, 1983.

[Makinson, 1989] D. Makinson. General theory of cumulative inference. In
M. Reinfrank, J. de Kleer, M. Ginsberg, and E. Sandewall, editors, Pro-
ceedings of the 2nd International Workshop on Non-monotonic Reasoning,
volume 346 of Lecture Notes in Computer Science, pages 1–18. Springer,
New York, 1989.

[Makinson, 1993] D. Makinson. Five faces of minimality.Studia Logica, 52(3):
339–379, 1993.

[McNamara, 1995] P. McNamara. The confinement problem: How to termi-
nate your mom with her trust. Analysis, 55(4):310–313, 1995.

[Moulin, 1985] H. Moulin. Choice functions over a finite set: A summary. So-
cial Choice and Welfare, 2(2):147–160, 1985.

[Nipkow et al., 2002] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
Lecture Notes in Computer Science, 2002.

[Nute, 1997] D. Nute, editor. Defeasible Deontic Logic. Kluwer Academic Pub-
lishers, Dordrecht, 1997.

[Olivetti and Pozzato, 2005] N. Olivetti and G. Pozzato. KLMLean 1.0: a
theorem prover for logics of default reasoning. In H. Schlingloff, editor,
Proceedings of the 4th International Workshop on Methods for Modalities
(M4M-4), pages 235–245. 2005.

61



Parent

[Olivetti and Pozzato, 2014] N. Olivetti and G. Pozzato. NESCOND: an im-
plementation of nested sequent calculi for conditional logics. In S. Demri,
D. Kapur, and C. Weidenbach, editors, Automated Reasoning - 7th Inter-
national Joint Conference, IJCAR 2014, volume 8562 of Lecture Notes in
Computer Science, pages 511–518. Springer, 2014.

[Parent, 2001] X. Parent. Cumulativity, identity and time in deontic logic. Fun-
dam. Inform., 48(2-3):237–252, 2001.

[Parent, 2008] X. Parent. On the strong completeness of Åqvist’s dyadic de-
ontic logic G. In R. van der Meyden and L. van der Torre, editors, Deontic
Logic in Computer Science (DEON 2008), volume 5076 of Lecture Notes in
Artificial Intelligence, pages 189–202. Springer, Berlin/Heidelberg, 2008.

[Parent, 2010] X. Parent. A complete axiom set for Hansson’s deontic logic
DSDL2. Logic Journal of the IGPL, 18(3):422–429, 2010.

[Parent, 2012] X. Parent. Why be afraid of identity? In A. Artikis, R. Craven,
N. K. Cicekli, B. Sadighi, and K. Stathis, editors, Logic Programs, Norms
and Action–Essays in Honor of Marek J. Sergot on the Occasion of His
60th Birthday, volume 7360 of Lecture Notes in Artificial Intelligence, pages
295–307, Heidelberg, 2012. Springer.

[Parent, 2014] X. Parent. Maximality vs. optimality in dyadic deontic logic.
Journal of Philosophical Logic, 43(6):1101–1128, 2014.

[Parent, 2015] X. Parent. Completeness of Åqvist’s systems E and F. Review
of Symbolic Logic, 8(1):164–177, 2015.

[Prakken and Sergot, 1997] H. Prakken and M. Sergot. Dyadic deontic logic
and contrary-to-duty obligations. In Nute [1997], pages 223–262.

[Rott, 2001] H. Rott. Change, Choice and Inference. Clarendon Press, Oxford,
2001.

[Schlechta, 1995] K. Schlechta. Preferential choice representation theorems for
branching time structures. Journal of Logic and Computation, 5(6):783–800,
1995.

[Schlechta, 1997] K. Schlechta. Nonmonotonic Logics. Springer, 1997.
[Sen, 1969] A. Sen. Quasi-transitivity, rational choice and collective decisions.

The Review of Economic Studies, 36(3):381–393, 1969.
[Sen, 1971] A. Sen. Choice functions and revealed preferences. The Review of

Economic Studies, 38(3):307–317, 1971.
[Sen, 1997] A. Sen.Maximization and the act of choice.Econometrica, 65(4):

745–779, 1997.
[Shoham, 1988] Y. Shoham. Reasoning About Change: Time and Causation

from the Standpoint of Artificial Intelligence. MIT Press, Cambridge, MA,
USA, 1988.

[Spohn, 1975] W. Spohn. An analysis of Hansson’s dyadic deontic logic. Jour-
nal of Philosophical Logic, 4(2):237–252, 1975.

[Stalnaker, 1968] R. Stalnaker. A theory of conditionals. In N. Rescher, editor,
Studies in Logical Theory, pages 98–112. Blackwell, Oxford, 1968.

62



Preference Semantics for Hansson-type Dyadic Deontic Logic

[Steen and Benzmüller, 2018] A. Steen and C. Benzmüller. The higher-order
prover Leo-III. In D. Galmiche, S. Schulz, and R. Sebastiani, editors, Au-
tomated Reasoning–9th International Joint Conference, IJCAR 2018, Pro-
ceedings, pages 108–116. Springer, 2018.

[Steen, 2018] A. Steen. Extensional Paramodulation for Higher-Order Logic
and its Effective Implementation Leo-III, volume 345 of DISKI. Akademis-
che Verlagsgesellschaft AKA GmbH, Berlin, 9 2018. Dissertation, Freie Uni-
versität Berlin, Germany.

[Stolpe, 2020] A. Stolpe. Unsettling preferential semantics. Journal of Philo-
sophical Logic, 49:371–399, 2020.

[Temkin, 1987] L. S. Temkin. Intransitivity and the mere addition paradox.
Philosophy and Public Affairs, 16(2):138–187, 1987.

[Tomberlin, 1981] J.E. Tomberlin. Contrary-to-duty imperatives and condi-
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Appendix A: Proof of Thm 3.3 (vi)

It is enough to describe a selection function model M = (W, f, v) in
which f meets syntax-independence (f0), inclusion (f1), Chernoff (f2),
consistency-preservation (f3) and Aizerman (f4), and in which (Sp) is
falsified. The claim that (Sp) is not derivable in F+(CM) follows at
once from Theorem 4.13 (iii). The same holds for (RM).

Our counter-model for (Sp) is similar to the model used in the proof
of Fact 2.13. Define M = (W, f, v) as follows: W = {a, b, c}; f is defined
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by

f(A) =
{
{a, c} if ‖A‖ = W

‖A‖ otherwise;

v(p) = W , v(q) = {b, c}, v(r) = {a, c} and v(s) = ∅ for all the other
propositional atoms s. (f0), (f1), (f2), (f3) and (f4) hold. But (Sp) is
falsified at, e.g., world a:

• f(p) = {a, c} ∩ ‖q‖ = {b, c} 6= ∅ ⇒ a |= P (q/p)
• f(p) = {a, c} ⊆ ‖q → r‖ = {a, c} ⇒ a |=©(q → r/p)
• f(p ∧ q) = {b, c} 6⊆ ‖r‖ = {a, c} ⇒ a 6|=©(r/p ∧ q)

Appendix B: Proof of Thms 4.2 (ii) and 4.5 (ii)
For the reader’s convenience, I restate the theorems to be proven:

Theorem 4.2 (ii). Under the max rule, F+(CM) is sound and com-
plete with respect to the class of preference models in which � is
max-smooth and transitive.
Theorem 4.5 (ii). Under the max rule, F+(CM) is sound and com-
plete with respect to the class of preference models in which � is
max-smooth, transitive, and reflexive.
Soundness is straightforward. Completeness for models in which �

is max-smooth and transitive follows from completeness for models in
which � is max-smooth, transitive and reflexive. Therefore, I will focus
on the latter. I find it more convenient to use an indirect approach, and
show how the result can be obtained from the completeness theorem for a
betterness relation max-smooth and reflexive, Theorem 4.5 (i), page 32.
The detailed proof of the latter result may be found in [Parent, 2014].
The betterness relation in the canonical model as defined there does
not satisfy the property of transitivity. Nevertheless, the desired result
follows, because one can transform the model into one in which � is
transitive in a truth-preserving way.21

Call � virtually connected whenever a � b implies a � c or c � b.
Given reflexivity, virtual connectivity implies totalness, but not the other
way around. In [Parent, 2014] it is argued that on the canonical model

21A direct proof is also possible. We need only change the definition of � in the
canonical model, and adapt the initial proof accordingly. The definition used by Goble
for his systems DDL-4 [Goble, 2015, p. 176 et seq.] and DDL-c [Goble, 2019] achieves
the result we want. The definition puts (a, B) � (b, C) whenever (a, B) = (b, C) or
(B ≥ C and C 6∈ a). For simplicity’s sake, I choose the indirect method.
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of F+(CM) as defined there (cf. Definitions 4.11 and 4.12, page 37
supra) the betterness relation � is total (hence reflexive) and opt-smooth
(resp., max-smooth). The first step is to realize that � is also virtually
connected, because the relation ≥ (in terms of which � is defined) is
transitive. Recall that A ≥ B is a shorthand for ©(A/A∨B), and that
(in the principal case) (a,B) � (b, C) iff: either C 6≥ B or B ∈ b.

The following fact from [Parent, 2014] will also be helpful:
Fact B.1. If A ≥ B ≥ C, wA ⊆ a, and C ∈ a, then wB ⊆ a.

Proof. This is [Parent, 2014, Lemma 2 (iii)].

Now for the main observation:
Fact B.2. In the canonical model M (w,A) of F+(CM) (as defined in
Definitions 4.11 and 4.12, on page 37), � is virtually connected.

Proof. Let (a,B), (b, C) and (c,D) be such that (a,B) 6� (c,D) and
(c,D) 6� (b, C).
Case 1: wA ⊆ w for some A. In that case, the canonical model generated
by (w,A) is as in Definition 4.11. So C ≥ D, D ≥ B and D 6∈ b. From
the first two, C ≥ B, by law (≥-trans) in Theorem 3.3. By construction,
wC⊆ b. By (Id), D ∈ wD and so wD 6⊆ b. By Fact B.1, B 6∈ b. By
Definition 4.11 (ii), (a,B) 6� (b, C) as required.
Case 2: wA ⊆ w for no A. In that case, the canonical model generated by
(w,A) is as in Definition 4.12. When it is supposed that (c,D) 6� (b, C),
that entails that (b, C) ∈ W̃ , by definition of �. Either (i) (a,B) :=
(w,A) or (ii) (a,B) ∈ W̃ . In case (i), (a,B) 6� (b, C) as required. In
case (ii), the hypothesis (a,B) 6� (c,D) entails that (c,D) ∈ W̃ , and the
claim follows for the same reason as in case 1.

The second step is to realize that in the presence of reflexivity virtual
connectivity and transitivity do not make much difference as long as we
are only interested in maximal elements. To be more precise, a reflexive
and virtually connected relation can be transformed into a reflexive and
transitive (albeit not necessarily total) one in a truth-preserving way
with respect to the max rule. (It does not matter which rule is applied
in the input model, since its betterness relation is total.)
Theorem B.3. For every preference model M = (W,�, v) in which �
is reflexive and virtually connected, there is a preference model M ′ =
(W,�′, v) (with W and v the same) in which �′ is reflexive and transi-
tive, such that M and M ′ are equivalent under the max rule. Further-
more, if � is max-smooth, then �′ is max-smooth.
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Proof. Starting with M = (W,�, v), define M ′ = (W,�′, v) by putting
a �′ b whenever a = b or b 6� a.

Reflexivity of �′ is immediate. Transitivity of �′ follows from virtual
connectivity of �. Let a �′ b and b �′ c. If one of a = b, b = c and a = c
is the case, then we are done. So assume a 6= b, b 6= c and a 6= c . Then
a �′ b and b �′ c mean that b 6� a and c 6� b. By virtual connectivity,
c 6� a, and so a �′ c as required.

To show equivalence, it is enough to note that:

Lemma B.4. �=�′.

Proof of Lemma B.4. The argument for the ⊆-direction appeals to the
reflexivity of �. Let a � b. Hence a � b but b 6� a. The latter implies
a �′ b, but also that a 6= b (since � is reflexive). On the other hand,
a � b and a 6= b in turn imply b 6�′ a. Hence a �′ b as required.

For the ⊇-direction, let a �′ b. Hence a �′ b but b 6�′ a. The latter
means that a 6= b and a � b. For a �′ b to hold, it must be the case that
b 6� a, which suffices for a � b.

With Lemma B.4 in hand, the argument is straightforward since we
have that, under the inductive hypothesis,

max�(‖B‖M ) = max�′(‖B‖M ′) (2)

It is also straightforward to show that max-smoothness of � implies
max-smoothness of �′. Details are omitted.

From this, Theorem 4.5 (ii) follows quickly. Suppose Γ 6`F+(CM) A.
A similar argument as in the proof of Theorem 5 of [Parent, 2014] yields
that the universe of the canonical modelM of F+(CM) contains a point
a such that under the max rule a verifies all of Γ and falsifies A. On that
model � is reflexive, max-smooth and virtually connected, Fact B.2. By
Theorem B.3, M can be transformed into a model M ′ whose relation
�′ is reflexive, transitive and max-smooth. The two models share the
same universe, so a is in M ′. Under the max rule a verifies all of Γ and
falsifies A, since the two models are equivalent. Thus, it is not the case
that under the max rule Γ |= A over the class of models in which the
betterness relation is reflexive, transitive and max-smooth.
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Appendix C: Proof of Thms 4.7 and 4.8
For the reader’s convenience, I restate the theorems to be proven:

Theorem 4.7. Under the max rule, E is sound and complete with
respect to (i) the class of models in which � is transitive, and (ii)
the class of models in which � is transitive and reflexive.
Theorem 4.8. Under the max rule, F is sound and complete with
respect to (i) the class of models in which � is transitive and max-
limited, and (i) the class of models in which � is transitive, max-
limited and reflexive.

Soundness is straightforward. For the completeness half, it suffices to
invoke the following theorem.22

Theorem C.1 (Goble [2015; 2019]). For every model M = (W,�, v),
there is a model M ′ = (W ′,�′, v′) in which �′ is reflexive and transitive,
and such that under the max rule M and M ′ are equivalent. Further-
more, if � is max-limited, then �′ is also max-limited.

Proof. Let M = (W,�, v). Define M ′ = (W ′,�′, v′) as follows:
• W ′ = {〈a, b, n〉 | a, b ∈W,n ∈ ω}
• 〈a, b, n〉 �′ 〈c, d,m〉 iff (1) 〈a, b, n〉 = 〈c, d,m〉 or

(2)



52 Xavier Parent

that under the opt/max rule a verifies all of � and falsifies A. On that
model ⌫ is reflexive, opt/max-smooth and virtually connected, Fact B.2.
By Theorem B.3, M can be transformed into a model M 0 whose relation
⌫0 is reflexive, transitive and max-smooth. The two models share the same
universe, so a is in M 0. Under the max rule a verifies all of � and falsifies
A, since the two models are equivalent. Thus, it is not the case that � |= A
with respect to the class of models applying the max rule in which ⌫ is
reflexive, transitive and max-smooth.

Appendix C: Proof of Theorems 4.7 and 4.8

For the reader’s convenience, I restate the theorems to be proven.

Theorem 4.7. Under the max rule, E is sound and complete with
respect to (i) the class of models in which ⌫ is transitive, and (ii) the
class of models in which ⌫ is transitive and reflexive.

Theorem 4.8. Under the max rule, F is sound and complete with
respect to (i) the class of models in which ⌫ is transitive and max-
limited, and (i) the class of models in which ⌫ is transitive, max-
limited and reflexive.

Soundness is straightforward. For the completeness half, it su�ces to
invoke Theorem C.1 below, due to Goble.

Theorem C.1 (Goble [2015]). For every preference model M = (W,⌫, v),
there is a preference model M 0 = (W 0,⌫0, v0) in which ⌫0 is transitive, and
such that under the max rule M and M 0 are equivalent. Furthermore, if ⌫
is reflexive and max-smooth, then ⌫0 is also reflexive and max-smooth.

Proof. Let M = (W,⌫, v). Define M 0 = (W 0,⌫0, v0) as follows:

• W 0 = {ha, b, ni | a, b 2 W, n 2 !}
• v0(p) = {ha, b, ni | a 2 v(p)}
• ha, b, ni ⌫0 hc, d, mi i↵ (1) ha, b, ni = hc, d, mi or

(a) b = d & n � m
and
(b1) c 6= d & a = c or (b2) c = d & a � c

The following two lemmas from [Parent, 2015] still hold, and will still be
helpful.

Lemma C.2. For all a 2 W , there exists some g such that g 2 Fa.

Proof. See [Parent, 2015, Lemma 3.6].

Lemma C.3. a 2 f(B) , a 2 kBkM and (9g 2 Fa) (Rng(g)\ kBkM ) = ;.

• v′(p) = {〈a, b, n〉 | a ∈ v(p)}

The following applies.

Fact C.2. W ′ 6= ∅.

Proof. This follows from the fact that W 6= ∅.

Fact C.3. �′ is reflexive.

Proof. This follows at once from clause (1) of the definition of �′.

Fact C.4. �′ is transitive.

22[Goble, 2019, p. 44] describes the theorem as a modification and generalization
of a theorem due to myself, planned for inclusion in the current chapter. At the time
Goble wrote his paper, such an inclusion was indeed planned. But Goble’s result
leaves out certain non-essential details, and for this reason I have decided to include
it instead.
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Proof. Assume 〈a, b, n〉 �′ 〈c, d,m〉 and 〈c, d,m〉 �′ 〈e, f, l〉.
In case one of these holds by clause (1) of the definition of �′, then

we are done. So suppose both hold by clause (2). By (2.a), we have
b = d and d = e, from which b = e follows. We also have n ≥ m and
m ≥ l. By transitivity of ≥, one gets n ≥ l.

Note that 〈a, b, n〉 �′ 〈c, d,m〉 and 〈c, d,m〉 �′ 〈e, f, l〉 cannot hold
in virtue of (2.b2) and (2.b1), respectively. The first implies c = d, while
the second implies e 6= f and c = e. One then gets e = c = d = f ,
a contradiction. Similarly, 〈a, b, n〉 �′ 〈c, d,m〉 and 〈c, d,m〉 �′ 〈e, f, l〉
cannot both hold in virtue of (2.b2). For in this case, c � e and e = f = d
would imply c � d, and so c � c, given that c = d. This contradicts the
irreflexivity of �. I consider the remaining cases in turn.

Suppose 〈a, b, n〉 �′ 〈c, d,m〉 and 〈c, d,m〉 �′ 〈e, f, l〉 both hold in
virtue of (2.b1). In that case, c 6= d, a = c, e 6= f and c = e. From a = c
and c = e, one gets a = e, and so we are done.

Suppose 〈a, b, n〉 �′ 〈c, d,m〉 holds in virtue of (2.b1) and 〈c, d,m〉 �′
〈e, f, l〉 holds in virtue of (2.b2). In that case, c 6= d, a = c, e = f and
c � e. One gets a � e, and so we are done.23

Lemma C.5. Under the max rule, M ′ is equivalent to M . That is, for
all a, b ∈W , and all n ∈ ω, a |= A⇔ 〈a, b, n〉 |= A.

Proof. By induction on A. I only handle the case where A = ©(C/B).
For the left-to-right direction, it will help to note that, under the induc-
tive hypothesis,

Sub-lemma C.6. If 〈c, d,m〉 ∈ max�′(‖B‖M ′), then c = d.

Proof of Sub-lemma C.6. Assume that 〈c, d,m〉 ∈ max�′(‖B‖M ′) and
that c 6= d. We have 〈c, d,m〉 |= B. Also 〈c, d,m + 1〉 ∈ W ′. By the
inductive hypothesis, 〈c, d,m+ 1〉 |= B. Since c 6= d, we have

〈c, d,m+ 1〉 �′ 〈c, d,m〉

But m+ 1 > m, and so

〈c, d,m〉 6�′ 〈c, d,m+ 1〉

Thus, 〈c, d,m〉 6∈ max�′(‖B‖M ′), contrary to assumption, and one must
conclude that c = d, after all.

23Fact C.4 is Lemma 31 in [Goble, 2019, p. 33]. I have modified the part of the
argument dealing with the case where the two opening suppositions hold in virtue
of (2.b2). In the paper the case is described as a possible one. But it is not, because
the second supposition would hold only if (in the author’s notation) c < e; this is a
contradiction since c = e.
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One can now turn to the proof of equivalence, starting with the
right-to-left direction.

(⇐) Assume 〈a, b, n〉 |= ©(C/B). Let c ∈ max�(‖B‖M ). We have
c |= B. By construction 〈c, c, n〉 ∈ W ′. Assume for a reductio that
〈c, c, n〉 6∈ max�′(‖B‖M ′). By the inductive hypothesis, 〈c, c, n〉 |= B.
So there is some 〈d, e,m〉 ∈ ‖B‖M ′ such that

〈d, e,m〉 �′ 〈c, c, n〉 (α)
〈c, c, n〉 6�′ 〈d, e,m〉 (β)

By (β), 〈c, c, n〉 6= 〈d, e,m〉. Thus, (α) holds because condition (2.a) of
the definition of �′ is met along with one of (2.b1) and (2.b2). Since
c = c, (2.b2) applies, viz. d � c. By the inductive hypothesis, d |= B.
But, then, c 6∈ max�(‖B‖M ). So one must conclude that 〈c, c, n〉 ∈
max�′(‖B‖M ′). But one then gets 〈c, c, n〉 |= C from the opening as-
sumption. By the inductive hypothesis, we get c |= C, which suffices for
a |=©(C/B).

(⇒) Assume a |= ©(C/B). Let 〈c, d,m〉 ∈ max�′(‖B‖M ′). By the
inductive hypothesis, c |= B. By Sub-lemma C.6, c = d, viz. 〈c, d,m〉
is 〈c, c,m〉. Assume for a reductio that c 6∈ max�(‖B‖M ). There is
some d such that d |= B and d � c. But 〈d, c,m + 1〉 ∈ W ′. By the
inductive hypothesis, 〈d, c,m + 1〉 |= B. By the definition of �′, one
gets 〈d, c,m + 1〉 �′ 〈c, c,m〉, a contradiction. So one must conclude
that c ∈ max�(‖B‖M ). From the opening assumption, c |= C, and so
〈c, d,m〉 |= C by the inductive hypothesis. This establishes the desired
claim 〈a, b, n〉 |=©(C/B).

It remains to verify that, if � is max-limited, then �′ is max-limited.
Assume that there exists some 〈a, b, n〉 ∈ W ′ such that 〈a, b, n〉 |= A.
By Lemma C.5, a |= A. Since � is max-limited, there is some c with
c ∈ max�(‖B‖M ). Re-running the same argument as that for the right-
to-left-direction of Lemma C.5, one gets 〈c, c, n〉 ∈ max�′(‖A‖M ′), and
thus �′ is max-limited.
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