
“Sing and Dance!”

Input/Output Logics without Weakening

Xavier Parent and Leendert van der Torre

University of Luxembourg
x.parent@mail.com

leonvandertorre@uni.lu

Abstract. Makinson and van der Torre [14] introduce a number of in-
put/output (I/O) logics to reason about conditional norms. The key idea
is to make obligations relative to a given set of conditional norms. The
meaning of the normative concepts is, then, given in terms of a set of
procedures yielding outputs for inputs. Using the same methodology,
Stolpe [20,21] has developed some more I/O logics to include systems
without the rule of weakening of the output (or principle of inheritance).
We extend Stolpe’s account in two directions. First, we show how to
make it support reasoning by cases−a common form of reasoning. Sec-
ond, we show how to inject a new (as we call it, “aggregative”) form of
cumulative transitivity, which we think is more suitable for normative
reasoning. The main outcomes of the paper are soundness and complete-
ness theorems for the proposed systems with respect to their intended
semantics.

1 Introduction

Makinson and van Torre [14] introduce a number of input/output (I/O) logics
to reason about conditional norms. The key idea is to make obligations relative
to a given set of conditional norms. The meaning of the normative concepts is,
then, given in terms of a set of procedures yielding outputs for inputs. A number
of I/O operations are studied in the aforementioned paper [14]. It is shown that
they correspond to a series of proof systems of increasing strength. I/O logic
promotes a paradigm shift from modal logic to what has recently been called
“norm-based semantics” by Hansen [10, p. 288]. The core idea is to explain the
truths of deontic logic, not by some set of possible worlds among which some are
ideal or at least better than others, but with reference to an explicit set of given
norms or existing moral standards. The founders of I/O logic mostly criticized
the modal logic paradigm for−to use Quine’s famous expression−having been
“conceived in the sin”: the sin of assuming that norms bear truth-values. Thus,
their main motivation was philosophical. Still, one reason why modal logic has
been so popular in deontic logic is that it is a general framework, which provides
us with plenty of freedom to pick and choose the axiom schemata we think are
right. Whatever philosophical reservations one may have about the use of modal
logic in deontic logic, one would like to know if, or to what extent, norm-based

2 X. Parent and L. van der Torre

semantics in general, and I/O logic in particular, can offer the same kind of
flexibility.

In this paper, we focus on the so-called rule of Weakening of the Output
(WO), which all the I/O operations defined by Makinson and van Torre [14] sat-
isfy. The rule may be given the following form, where the conditional obligation
for x given a is written as (a, x), and ` stands for the deducibility relation in
propositional logic:

(a, x) x ` y
WO

(a, y)

This is also known as the “principle of inheritance”. It has been called into
question, mostly in connection with the deontic paradoxes [5,6,11,9,2] and the
question of how to accommodate conflicts between obligations−see, e.g., [7,8].
This raises the question whether the framework may be generalized to include
systems without output weakening; if yes, how.

A first step towards answering the above question was made by Stolpe [20,21].
He considers two of the four standard I/O operations defined by Makinson and
van der Torre [14], namely the so-called simple-minded I/O operation out1, and
the so-called reusable I/O operation out3. Both develop output by detachment.
While out1 spells out the basic mechanism used to achieve this, out3 extends
it to cover iteration of successive detachments. For both operations, a suitable
semantics is given, for which the rule WO fails. Each semantics comes with
a sound and complete axiomatic characterization. The present paper extends
Stolpe’s account in two ways.

First, we show how to refine Stolpe’s account to make the latter one support
reasoning by cases−this is a common form of reasoning. We look at the I/O
operation out2, called “basic” by Makinson and van der Torre [14]. Its distinctive
feature is that it validates the rule OR:

(a, x) (b, x)
OR

(a ∨ b, x)

The present paper shows how to incorporate such a rule. We provide a suitable
semantics for the I/O operation, a proof system for it, and a completeness result
linking the two.

Second, we show how to integrate other forms of cumulative transitivity.
There is no doubt that some form of transitivity is required for an adequate
account of norms and normative systems. One reason is that transitivity serves as
a means of binding together different parts of a code. For instance, a legal system
is invariably organized into different modules which are interrelated. Rules from
one module stipulate legal consequences that are used as premises for some rules
part of another module. Penal law may, e.g., state that grand larseny ought to be
added to a person’s criminal record, whereas administrative law may stipulate
that an unblemished record is a prerequisite for public office. Some form of
transitivity is required to go from grand larseny to the bar to holding public
office.

I/O Logics without Weakening 3

Stolpe uses the rule of (as he calls it) “mediated cumulative transitivity”
(MCT):

(a, x′) x′ ` x (a ∧ x, y)
MCT

(a, y)

As we will see in Section 4, given the other rules of his system, MCT turns out
to be equivalent to the rule of cumulative transitivity (CT), as initially used by
Makinson and van der Torre [14]:

(a, x) (a ∧ x, y)
CT

(a, y)

We look at the following alternative (call it “aggregative”) variant, first intro-
duced in a companion paper [17]:

(a, x) (a ∧ x, y)
ACT

(a, x ∧ y)

The counterexamples usually given to CT in the literature [16,12,13] no longer
work, when ACT is used in place of CT. This is because they all rely on the
intuition that the obligation of y ceases to hold when the obligation of (a, x)
is violated. The following example, due to Broome [1, § 7.4], may be used to
illustrate this point:

You ought to exercise hard everyday

If you exercise hard everyday, you ought to eat heartily

?? You ought to eat heartily

(>, x)

(x, y)

?? (>, y)

Intuitively, the obligation to eat heartily no longer holds, if you take no exercise.
In this example, the correct conclusion is (>, x∧ y), and not (>, y). Thus, ACT
appears to be more suitable for normative reasoning, because it keeps track of
what has been previously detached.

The layout of this paper is as follows. Section 2 lays the groundwork, tackling
out1 in essentially the same way as Stolpe does. Section 3 extends the account so
that reasoning by cases is supported. Section 4 shows how to inject the aggrega-
tive form of cumulative transitivity mentioned above. The main achievement
of the paper is the establishment of soundness and completeness theorems for
the proposed systems with respect to their intended semantics. We do not give
all the details of the soundness and completeness proofs, but we outline the
main steps.1 Section 5 discusses some properties satisfied by the I/O operations
defined in this paper.

1 The detailed proofs will be included in the journal version of the present paper.

4 X. Parent and L. van der Torre

2 Developing the Output by Detachment (out1)

We start with the simple-minded I/O operation out1. The I/O operation to be
defined here is noted O1. It is essentially a variation on the I/O operation PN1

put forth by Stolpe [20,21]. The main reason for including such an operation in
our study is that the completeness result for it will be needed for subsequent
developments.

First, some definitions are needed. A normative code is a set N of conditional
obligations. A conditional obligation is a pair (a, x), where a and x are two
formulae of classical propositional logic. We use this notation instead of©(x | a),
because the latter has distinct interpretations in the literature. In the notation
(a, x), the first element a is called the body of the rule, and is thought of as an
input, representing some condition or situation. The second element x is called
the head of the rule, and is thought of as an output, representing what the norm
tells us to be obligatory in that situation. We use the standard notation (>, x)
for the unconditional obligation of x, where > is a zero-place connective standing
for ‘tautology’. In I/O logic, the main construct has the form

x ∈ out(N, a)

Intuitively: given input a (state of affairs), x (obligation) is in the output under
norms N . An equivalent notation is: (a, x) ∈ out(N). The I/O operations to be
defined in this paper will be denoted by the symbol O in order to avoid any
confusion with out and ©.

Some further notation. L is the set of all formulae of classical propositional
logic. Given an input A ⊆ L, and a set N of norms, N(A) denotes the image of
N under A, i.e., N(A) = {x : (a, x) ∈ N for some a ∈ A}. Cn(A) denotes the set
{x : A ` x}, where ` is the deducibility relation used in classical propositional
logic. The notation x a` y is short for x ` y and y ` x. We use PL as an
abbreviation for (classical) propositional logic. Given M ⊆ N , we denote by
h(M) the set of all the heads of elements of M , viz h(M) = {x : (a, x) ∈M}.

Definition 1 (Semantics). x ∈ O1(N,A) if and only if there is some finite
M ⊆ N such that

– M(Cn(A)) 6= ∅ , and
– x a` ∧M(Cn(A))

Intuitively: x is equivalent to the conjunction of heads of rules in some M ⊆ N
that are all triggered by input A.

The main difference between O1 and PN1 arises when A does not trigger any
norm, viz. M(Cn(A)) = ∅ for all M ⊆ N . In this limiting case, PN1 outputs
the set of all tautologies, while O1 outputs nothing. Von Wright [22, pp. 152-4]
argues, rightly in our view, that the obligation of > does not express a genuine
prescription.
O1 is monotonic with respect to the input set. The latter claim requires a

careful and detailed proof, because there is a pitfall to avoid.

I/O Logics without Weakening 5

Theorem 1 (Factual monotony). We have O1(N,A) ⊆ O1(N,B) whenever
Cn(A) ⊆ Cn(B).

Proof. Assume x ∈ O1(N,A) and Cn(A) ⊆ Cn(B). From the former, there is
some finite M1 ⊆ N such that M1(Cn(A)) 6= ∅, and

1. x a` ∧M1(Cn(A))

There is no guarantee that input set B does not trigger more pairs in M1 than
A does. To circumvent this problem, the argument takes a detour through the
set

M−1 = {(c, y) ∈M1 : c ∈ Cn(A)}

Thus, M−1 is M1 “stripped of” all the pairs that are not triggered by A. We have
M1(Cn(A)) = M−1 (Cn(A)). We also have M−1 (Cn(A)) = M−1 (Cn(B)), viz.

{y : (c, y) ∈M−1 , c ∈ Cn(A)} = {y : (c, y) ∈M−1 , c ∈ Cn(B)}

The ⊆-direction follows from the second opening assumption, Cn(A) ⊆ Cn(B).
The ⊇-direction follows from the definition of M−1 . The argument may, then, be
continued thus:

2. x a` ∧M−1 (Cn(A))
3. x a` ∧M−1 (Cn(B))

Thus, x ∈ O1(N,B) as required. ut

It immediately follows that O1(N,A) ⊆ O1(N,B) whenever A ⊆ B.

We set O1(N) = {(A, x) : x ∈ O1(N,A)}. The notion of derivation is de-
fined as in standard I/O logic except that (>,>) is not allowed to appear in a
derivation unless it is explicitly given in the set N of assumptions.

Definition 2 (Proof system). (a, x) ∈ D1(N) if and only if there is a deriva-
tion of (a, x) from N using the rules {SI, EQ, AND}:

(a, x) b ` a
SI

(b, x)

(a, x) x a` y
EQ

(a, y)

(a, x) (a, y)
AND

(a, x ∧ y)

Where A is a set of formulae, (A, x) ∈ D1(N) means that (a, x) ∈ D1(N), for
some conjunction a of formulae, all taken from a finite subset of A. D1(N,A) is
{x : (A, x) ∈ D1(N)}.

Theorem 2. O1 validates the rules of D1 (for individual formulae a).

Proof. The argument is straightforward, and left to the reader. (For SI, the same
trick as in the proof of Theorem 1 must be used.) ut

6 X. Parent and L. van der Torre

Theorem 3 (Soundness). D1(N,A) ⊆ O1(N,A)

Proof. The proof is by induction on the length of the derivation, using Theo-
rems 1 and 2. ut

Theorem 4 (Completeness). O1(N,A) ⊆ D1(N,A)

Proof. Assume x ∈ O1(N,A). So there exists some finite M ⊆ N such that
M(Cn(A)) = {x1, ..., xn} 6= ∅ and x a` ∧ni=1xi. For each xi, there is some
ai ∈ Cn(A) such that (ai, xi) ∈M . For each ai, there is also a conjunction bi of
elements in A such that bi ` ai. A derivation of (A, x) from M , and hence from
N , is shown below.

(a1, x1)
SI

(∧ni=1bi, x1)
(an, xn)

SI
(∧ni=1bi, xn)

AND
(∧ni=1bi,∧ni=1xi)EQ

(∧ni=1bi, x)

This is a derivation of (A, x), as ∧ni=1bi is a conjunction of elements in A. ut

3 Reasoning by Cases

In this section, the account described in the previous section is extended to the
basic operation out2, which supports reasoning by cases. The I/O operation is
denoted O2, and the corresponding proof system is called D2. We call a set of
formulae complete if it is either equal to L or maximal consistent (the set is
consistent, and none of its proper extensions is consistent).

Definition 3. O2(N,A) = ∩{O1(N,V) : A ⊆ V, V complete}.

Theorem 5. O1(N,A) ⊆ O2(N,A).

Proof. Let x ∈ O1(N,A). Let V be a complete set such that A ⊆ V . By Theo-
rem 1, x ∈ O1(N,V). By Definition 3, x ∈ O2(N,A) as required. ut

Theorem 6 (Factual monotony). O2(N,A) ⊆ O2(N,B) if Cn(A) ⊆ Cn(B)

Proof. Assume x ∈ O2(N,A) and Cn(A) ⊆ Cn(B). Let V be a complete set
such that B ⊆ V . We have Cn(B) ⊆ Cn(V) = V . From this and the second
opening assumption, Cn(A) ⊆ V . So, A ⊆ V . From this and the first opening
assumption, x ∈ O1(N,V). Thus, x ∈ O2(N,B). ut

Definition 4. (a, x) ∈ D2(N) if and only if there is a derivation of (a, x)
from N using the rules of D1 supplemented with

OR
(a, x) (b, x)

(a ∨ b, x)

I/O Logics without Weakening 7

The next theorem appeals to the fact that O1 validates AND and EQ for an
input set of arbitrary cardinality rather than just a singleton set. The argument
is virtually the same in both cases. Details are omitted.

Theorem 7. O2 validates the rules of D2 (for individual formulae a).

Proof. For SI. Assume x ∈ O2(N, a) with b ` a. Let V be a complete set such
that b ∈ V . From b ` a, we get a ∈ V . By Definition 3, we infer x ∈ O1(N,V).
This shows that x ∈ O2(N, b).

For AND. Assume x ∈ O2(N, a) and y ∈ O2(N, a). Let V be a complete set
such that a ∈ V . By Definition 3, x ∈ O1(N,V) and y ∈ O1(N,V). Since O1

validates AND, x ∧ y ∈ O1(N,V). This shows that x ∧ y ∈ O2(N, a).
For OR. Assume x ∈ O2(N, a) and x ∈ O2(N, b). Let V be a complete set

containing a ∨ b. Since V is complete, either a ∈ V or b ∈ V . Assume that
the first applies. In that case, x ∈ O1(N,V), by the first opening assumption
and Definition 3. Assume the second applies. In that case x ∈ O1(N,V), by the
second opening assumption and Definition 3. Either way, x ∈ O1(N,V), and
thus x ∈ O2(N, a ∨ b) as required.

For EQ, assume x ∈ O2(N, a) and x a` y. Let V be a complete set contain-
ing a. By Definition 3, x ∈ O1(N,V). Since O1 validates EQ, y ∈ O1(N,V), and
so y ∈ O2(N, a) as required. ut

Theorem 8 (Soundness). D2(N,A) ⊆ O2(N,A).

Proof. Same argument as before, but using Theorems 6 and 7. ut

Theorem 9 (Completeness). O2(N,A) ⊆ D2(N,A).

Proof. We give an outline of the proof for a singleton input set {a}. The proof
may easily be generalized to an input set of arbitrary cardinality. For ease of
exposition, throughout the proof we write (SI,AND) to indicate an application
of SI followed by that of AND. We break the argument into two cases.

Case 1: a is inconsistent. In this case, there is exactly one complete set V
containing a; it is L. So O2(N, a) = O1(N,L). Let x ∈ O1(N,L). This means
that x a` ∧ni=1xi, for x1, ..., xn ∈ h(N). Let a1, ..., an be the body of the rules
in question. We have a ` ∧ni=1ai. A derivation of (a, x) from N may, then, be
obtained as shown below.

(a1, x1) ... (an, xn)
(SI,AND)

(∧ni=1ai,∧ni=1xi) ∧ni=1xi a` x EQ
(∧ni=1ai, x) a ` ∧ni=1ai

SI
(a, x)

Case 2: a is consistent. Assume (for reductio) that x ∈ O2(N, a) and that
x 6∈ D2(N, a). From the former, x a` ∧ni=1xi, for x1, ..., xn ∈ h(N). In order to
derive the contradiction that x 6∈ O2(N, a), we start by showing that {a} can
be extended to some “maximal” V ⊇ {a} such that x 6∈ D2(N,V). By maximal,

8 X. Parent and L. van der Torre

we mean that for all V ′ ⊃ V , x ∈ D2(N,V ′). Thus, V is amongst the “biggest”
input sets V containing a and not making x derivable.

V is built from a sequence of sets V0, V1, V2, ... as follows. Consider an enu-
meration x1, x2, x3, ... of all the formulae. We define:

V0 = {a}

Vn =

{
Vn−1 ∪ {xn}, if x 6∈ D2(N,Vn−1 ∪ {xn})
Vn−1, otherwise

V = ∪{Vn : n ≥ 0}

It is a straightforward matter to show the following:

Fact 1 x 6∈ D2(N,Vn), for all n ≥ 0.

Fact 2 Vn ⊆ V , for all n ≥ 0.

Fact 3 For every finite subset V ′ ⊆ V , V ′ ⊆ Vn, for some n ≥ 0.

By Fact 2, V includes {a} (=V0).The argument may be continued thus:

Claim 1 x 6∈ D2(N,V).

Proof of the claim. Assume, to reach a contradiction, that x ∈ D2(N,V). By
compactness for D2, x ∈ D2(N,V ′) for some finite V ′ ⊆ V . By Fact 3, V ′ ⊆ Vn
for some n ≥ 0. By monotony in the right argument, x ∈ D2(N,Vn). This
contradicts Fact 1.

Claim 2 For all V ′ ⊃ V , x ∈ D2(N,V ′).

Proof of the claim. Let V ′ ⊃ V . So, there is some y such that y ∈ V ′ but y 6∈ V .
Any such y is such that y = xn, for some n ≥ 1. By Fact 2, Vn ⊆ V . So, y 6∈ Vn.
By construction, Vn−1 = Vn, and x ∈ D2(N,Vn−1 ∪{y}) = D2(V, Vn ∪{y}). But
Vn ∪ {y} ⊆ V ∪ {y} ⊆ V ′. By monotony in the right argument for D2, we get
that x ∈ D2(N,V ′), as required.

Claim 3 V is consistent.

Proof of the claim. Assume not. Since x a` ∧ni=1xi, for x1, ..., xn ∈ h(N), a
derivation of (V, x) from N may be obtained by reiterating the argument under
case 1, contradicting Claim 1.

Claim 4 V is ¬-complete; that is, for all y, either y ∈ V or ¬y ∈ V .

Proof of the claim. Assume y 6∈ V and ¬y 6∈ V for some y. By Claim 2, it follows
that x ∈ D2(N,V ∪{y}) and x ∈ D2(N,V ∪{¬y}). Thus, (b∧y, x) and (c∧¬y, x)
are both derivable from N , where b and c are conjunctions of elements of V . The
following is, then, derivable:

I/O Logics without Weakening 9

(b ∧ y, x) (c ∧ ¬y, x)
OR

((b ∧ y) ∨ (c ∧ ¬y), x)
SI

(b ∧ c, x)

Thus, x ∈ D2(N,V), in contradiction with Claim 1.

Claim 5 V is maximal consistent; that is, if V ∪ {y} is consistent, then y ∈ V .

Proof of the claim. Assume y 6∈ V . By Claim 4, ¬y ∈ V . It, then, follows that
V ∪ {y} is inconsistent, as required.

We are almost finished. By Theorem 3 and Theorem 4, we have O1(N,V) =
D1(N,V) ⊆ D2(N,V). So x 6∈ O1(N,V). Hence, x 6∈ O2(N,A). ut

4 Aggregative Cumulative Transitivity

This section shows how to redefine Makinson and van der Torre’s reusable output
operation out3 so that it validates neither WO nor CT but ACT:

(a, x) (a ∧ x, y)
ACT

(a, x ∧ y)

(a, x) (a ∧ x, y)
CT

(a, y)

ACT and WO together imply CT.
Stolpe [20,21] named “PN3” his own variant of out3. The distinctive rule of

PN3 is the rule MCT mentioned in the introduction:

(a, x′) x′ ` x (a ∧ x, y)
MCT

(a, y)

We said that, given the other rules in Stolpe’s system, MCT is equivalent to CT.
This is easily checked. The other rules are: SI, AND and EQ. On the one hand,
given reflexivity for `, MCT entails CT. For assume (a, x) and (a ∧ x, y). Since
x ` x, a direct application of MCT yields (a, y). On the other hand, given SI,
CT entails MCT:

(a, x′)

(a ∧ x, y)
x′ ` x

a ∧ x′ ` a ∧ x
SI

(a ∧ x′, y)
CT

(a, y)

Note that, given SI, AND and EQ (we will keep them all), ACT is equivalent to:

(a, x′) x′ ` x (a ∧ x, y)
AMCT

(a, x′ ∧ y)

In this respect, weakening has still a “ghostly” role to play for iteration of suc-
cessive detachments.

For the sake of conciseness, throughout this section BMA will denote the set
of all the Bs such that A ⊆ B = Cn(B) ⊇ M(B). Intuitively, BMA gathers all
the Bs that contain A and are closed under both Cn and M .

10 X. Parent and L. van der Torre

Definition 5 (Semantics). x ∈ O3(N,A) if and only if there is some finite
M ⊆ N such that,

– M(Cn(A)) 6= ∅, and
– for all B, if B ∈ BMA , then x a` ∧M(B).

We do not single out any particular B as “proper”. But we highlight two very
useful such Bs, which we call the smallest and the largest: ∩BMA ; L.

A subset M of N that makes x ∈ O3(N,A) true is called an “A-witness
for x”. Unlike with O1, we have the guarantee that such a M does not contain
any rule that is superfluous, viz. not required to get output x:

Theorem 10. If M is an A-witness for x, then x a` ∧h(M).

Proof. Let M be an A-witness for x. By Definition 5, M(Cn(A)) 6= ∅, and
x a` ∧M(B) for all B ∈ BMA . Consider B = L. We have x a` ∧M(L). But
M(L) = h(M), and thus x a` ∧h(M). ut

Theorem 11 (Factual monotony). We have O3(N,A1) ⊆ O3(N,A2) when-
ever Cn(A1) ⊆ Cn(A2).

Proof. Assume x ∈ O3(N,A1) and Cn(A1) ⊆ Cn(A2). From the first, we get:
there is some finite M1 ⊆ N such that M1(Cn(A1)) 6= ∅ and, for all B ∈ BM1

A1
,

M1(B) = {x1, ..., xn} and x a` ∧ni=1xi (1)

Note that, by Theorem 10, x a` ∧h(M1), and so the trick used for the proof of
Theorem 1 is no longer needed.

From Cn(A1) ⊆ Cn(A2), we get M1(Cn(A1)) ⊆ M1(Cn(A2)). Therefore,
M1(Cn(A2)) 6= ∅. Now, consider some B1 ∈ BM1

A2
. We have A2 ⊆ B1. Therefore,

Cn(A2) ⊆ Cn(B1) = B1. From A1 ⊆ Cn(A1) ⊆ Cn(A2), we then get A1 ⊆ B1,
and hence B1 ∈ BM1

A1
. By (1), x a` ∧M1(B1) a` ∧h(M1). So, x ∈ O3(N,A2) as

required. ut

We define O3(N) = {(A, x) : x ∈ O3(N,A)}. Example 1 shows that O3 does
not validate the rule of deontic detachment, and hence does not validate CT.

Example 1 (Deontic detachment). Consider the set of normsN = {(>, a), (a, x)}.
We have a ∈ O3(N,>), since M = {(>, a)} is a >-witness for a. We also have
x ∈ O3(N, a), since M = {(a, x)} is an a-witness for x. But we do not have
x ∈ O3(N,>). This may be verified in two steps. First, you identify all the non-
empty subsets M of N that are triggered by the input, M(Cn(∅)) 6= ∅. Next,
you go through the list of all these subsets, and check that, for none of them,
the smallest relevant B outputs heads whose conjunction is equivalent to x:

M B M(B)
{(>, a)} Cn(a) {a}

{(>, a)(a, x)} Cn(a, x) {a, x}

I/O Logics without Weakening 11

We illustrate the account with two examples from the literature.

Example 2 (“Change your mind!”). Hansson [12] gives the following example,
with credit to Pörn:

“Consider the hoary example of the man who ought to go to a meeting
on August 5 and who ought to send, on August 2, a note explaining his
absence, if and only if he is in fact going to be absent.” [12, p.425-6]

The example is structurally identical to the Chisholm example [3]. The norms
involved may be rendered as N = {(>,m), (m,¬s)(¬m, s)}, where m and s are
for attending the meeting and sending a note, respectively. Given input >, m∧¬s
is outputted, but not ¬s. This is as it should be. The obligation of ¬s will not
be triggered unless the agent is going to fulfil his primary obligation of m. In
the violation context ¬m, m ∧ ¬s is still outputted. If not, then the following
intuitive deontic reasoning pattern would not be supported:

“August 2 arrives, and though he is able to attend the meeting, he has
no intention of doing so. He argues: ‘I ought to change my mind, forbear
note-writing, and attend the meeting.... My present fulfillment of this
obligation will help make up for my sinfully staying at home on the
fifth!’.” [12, p. 426]

Example 3 (“Sing and dance!”). Conjunction elimination refers to the move
from “it ought to be the case that x ∧ y” to “it ought to be the case that
x”. Consider N = {(>, x ∧ y)}. Given input >, x ∧ y is outputted, but not x.
Goble [6, p.183-184] and Hansen [9, §6.2], among others, have argued against
conjunction elimination. There are cases where the two states of affairs (men-
tioned in the obligation) are only conjunctively required. If the obligation of x
was outputted, then (when assessing how well or badly the agent did) a strange
consequence would follow, in the event that the agent made x, but not y, true.
One would have to acknowledge that (to quote Goble) “he’s not a complete
scoundrel” [6, p.183], since at least one obligation (albeit a derived one) was ful-
filled. Intuitively, one would like to be able to say that no obligations have been
fulfilled, and that nothing right has happened. This may be illustrated with the
sing-and-dance example, due to Goble. By making only one conjunct true, the
agent makes things worse than if he had done nothing. Suppose there is a party
of sing and dance performers given in honour of someone called Gene. Everyone
ought to perform a sing and dance routine, because Gene loves them both, and
cannot tolerate either without the other. One guest, call him Fred, chooses not
to sing but only to dance. Gene is appalled. The party is ruined, because of
Gene’s tantrum.

Definition 6 (Proof system). (a, x) ∈ D3(N) if and only if there is a deriva-
tion of (a, x) from N using the rules {SI, EQ, ACT}.

(a, x) (a ∧ x, y)
ACT

(a, x ∧ y)

12 X. Parent and L. van der Torre

AND is derivable from SI and ACT. We define (A, x) ∈ D3(N) and D3(N,A) as
we did for D1.

Theorem 12. O3 validates the rules of D3 (for individual formulae a).

Proof. The argument for SI is virtually the same as in the proof of Theorem 11.
The argument for EQ is straightforward, and is omitted. We show ACT. Assume
that x ∈ O3(N, a), y ∈ O3(N, a ∧ x) and x ∧ y 6∈ O3(N, a). From the first
two, it follows that there are finite M1,M2 ⊆ N such that M1(Cn(a)) 6= ∅,
M2(Cn(a, x)) 6= ∅, and

x a` ∧M1(B) for all B ∈ BM1
a (2)

y a` ∧M2(B) for all B ∈ BM2
a∧x (3)

By Theorem 10,

x a` ∧h(M1) (4)

y a` ∧h(M2) (5)

Therefore,

x ∧ y a` ∧h(M1) ∧ (∧h(M2)) (6)

a` ∧h(M3) (7)

where M3 = M1∪M2. From the third opening assumption, since M3(Cn(a)) 6= ∅,
it follows that there is some B1 ∈ BM3

a such that

not-(x ∧ y a` ∧M3(B1)) (8)

We have M1(B1) ⊆ M3(B1), and so B1 ∈ BM1
a . Therefore x ∈ B1, and hence

a ∧ x ∈ B1. So B1 ∈ BM2
a∧x too, since M2(B1) ⊆M3(B1). Now,

M3(B1) = M1(B1) ∪M2(B1)

where ∧M1(B1) a` x and ∧M2(B1) a` y. Thus, ∧M3(B1) a` x ∧ y, a contra-
diction. ut

Theorem 13 (Soundness). D3(N,A) ⊆ O3(N,A)

Proof. Same argument as for Theorem 3 using Theorems 11 and 12. ut

Theorem 14 (Completeness). O3(N,A) ⊆ D3(N,A)

Proof. We give an outline of the proof for the particular case where A is a
singleton set {a}. Suppose that x ∈ O3(N, a). To show: x ∈ D3(N, a). From
the former, there is some finite M ⊆ N such that M(Cn(a)) 6= ∅ and, for all
B ∈ BMa , x a` ∧M(B).

Put B1 = Cn({a} ∪ D3(M,a)). We have a ∈ B1 = Cn(B1). We also have
M(B1) 6= ∅, because Cn(a) ⊆ B1. A phasing result from [14] allows, then, to

I/O Logics without Weakening 13

establish that M(B1) ⊆ B1, so that B1 ∈ BMa . The opening assumption, then,
yields, x a` ∧M(B1).

Based on this, one gets a derivation of (a, x) from N as follows. First, note
that M(B1) 6= ∅. By Definition 1, one gets x ∈ O1(N, {a} ∪ D3(M,a)). By
Theorem 4, x ∈ D1(N, {a} ∪ D3(M,a)), and thus x ∈ D3(N, {a} ∪ D3(M,a)).
This means that x ∈ D3(N, {a, a1, ..., an}), where, for each ai, ai ∈ D3(M,a).
By AND, ∧ni=1ai ∈ D3(M,a). Since M ⊆ N , ∧ni=1ai ∈ D3(N, a). A derivation of
(a, x) from N is shown below.

(a,∧ni=1ai) (a ∧ (∧ni=1ai), x)
ACT

(a,∧ni=1ai ∧ x)

x ` ∧ni=1ai
∧ni=1ai ∧ x a` xEQ

(a, x)

The argument for x ` ∧ni=1ai appeals to two lemmas:

– x a` ∧h(M), Theorem 10

– h(M) ` ai, for all 1 ≤ i ≤ n − the proof of this is by induction on the length
of the derivation of (a, ai)

The argument may be generalized to an input set A of arbitrary cardinality. ut

5 Properties

In a companion paper [17], we identify some desirable properties, which are all
satisfied by O3. These are listed in Table 1. We refer the reader to the aforemen-
tioned paper for the motivation and a discussion of these properties. These also
hold for O1 and O2, when replacing out3 by out1 or out2, respectively. On the left
hand side of the table, exact factual detachment (efd) and violation detection
(vd) characterise what is special about deontic logic, while substitution (sub),
replacements of logical equivalents (rle), implication (imp) and paraconsistency
(pc) say something about logic. We use the notation x[σ] to denote a substitution
instance of x. Thus, x[σ] is obtained from x by replacing uniformly, in x, all occur-
rences of a propositional letter by the same propositional formula. A[σ] and N [σ]
extend the notion of substitution instance to sets of formulae, and sets of norms
in the straightforward way. We write N ≈ M whenever M is obtained from N ,
by replacing each (b, y) ∈ N with some (c, z) such that b is equivalent with c,
and y is equivalent with z. Implication makes use of the so-called materialisation
m(N) of a normative system N , which means that each norm (a, x) is interpreted
as a material conditional a → x, i.e. as the propositional sentence ¬a ∨ x. We
distinguish between violations V (N,A) = {x ∈ O3(N,A) | ¬x ∈ Cn(A)} and
non-violations (or cues for action) V (N,A) = O3(N,A) \ V (N,A).

On the right hand side of the table, norm monotony (nm) and norm induc-
tion (ni) are called “norm change properties”, because the normative system N
is no longer held constant. Together, exact factual detachment, norm monotony
and norm induction are equivalent to saying that O3(N) is a closure operator.

14 X. Parent and L. van der Torre

Table 1. Properties [17]

efd (x, y) ∈ N ⇒ y ∈ O3(N, x) nm O3(N) ⊆ O3(N ∪M)
vd (A, y) ∈ O3(N)⇒ (A ∪ {¬y}, y) ∈ O3(N) ni M ⊆ O3(N)⇒
sub x ∈ O3(N,A)⇒ x[σ] ∈ O3(N [σ], A[σ]) O3(N) = O3(N ∪M)
rle N ≈M ⇒ O3(N) ⊆ O3(M) io O3(N,A) ⊆ out3(N,A)
imp O3(N,A) ⊆ Cn(m(N) ∪A) r outf3(N,A) = outf3(O3(N), A)

pc x ∈ V (N,A)⇒ ∃M ⊆ N : x ∈ O3(M,A) sr outf3(N ∪M,A) =
and O3(M,A) ∪A consistent outf3(O3(N) ∪M,A)

Finally, the reusability properties relate the system to standard I/O logic: inclu-
sion in reusable output (io), redundancy (r) and strong redundancy (sr). Their
formulation appeals to some key notions of so-called constrained input/output
logic, developed by Makinson and van der Torre [15] in order to reason about
norm violation:

conf(N,A) = {N ′ ⊆ N | out(N ′, A) ∪A consistent }
maxf(N,A) = {N ′ ∈ conf(N,A) | N ′ ⊆ -maximal }
outf(N,A) = {out(N.A) | N ′ ∈ maxf(N,A) }

It is worth recalling the reason why consistency checks were introduced in I/O
logic. This was done in relation to contrary-to-duty reasoning. In unconstrained
input/output logic, a violation leads to outputting the whole propositional lan-
guage. This deontic explosion is not a property of the logics we introduce in this
paper, as a direct consequence of the lack of the weakening rule. We believe that
the unconstrained logics introduced in this paper can capture some aspects of
contrary-to-duty-reasoning.

There is another property that acts as a bridge between the logics defined
in this paper and the traditional input/output logics. It was not listed in [17]
because it may not necessarily be considered a desirable property. This is the
property: out1(N,A) = Cn(O1(N,A)) and out3(N,A) = Cn(O3(N,A)). Some-
what surprisingly, we do not have in general out2(N,A) = Cn(O2(N,A)). For a
counter-example, take N = {(a, x), (b, x ∧ y)} and A = {a ∨ b}. We leave it for
future research to define a logic O′2 satisfying not only the properties in Table 1,
but also the requirement out2(N,A) = Cn(O′2(N,A)).

6 The Way Forward

This paper has extended Stolpe’s results on I/O logics without weakening in
two directions. First, we have shown how to account for reasoning by cases.
Second, we have shown how to inject a new (“aggregative”) form of cumulative
transitivity, which we think is more suitable for normative reasoning. Soundness
and completeness theorems for the proposed systems have been reported.

More work is to be carried out. First, it would be interesting to know if the two
semantics proposed here may be merged to yield a new basic reusable operation

I/O Logics without Weakening 15

out4, with ACT, but not WO, amongst its primitive rules. Second, we have found
that ACT has two drawbacks. The first one is that ACT derives the so-called
pragmatic oddity [18]. The second one is that, in a violation context, ACT creates
‘irrelevant’ obligations, and thus the account faces an over-generation problem:
more obligations are generated than it seems right. Let us call this the irrelevant
obligation problem. The derivation to the left illustrates the pragmatic oddity
with the dog-and-sign scenario—the letters d and s are for “there is a dog” and
“there is a warning sign,” respectively. The derivation to the right illustrates the
irrelevant obligation problem.

(>,¬d)
SI

(d,¬d)

(d, s)
SI

(d ∧ ¬d, s)
ACT

(d,¬d ∧ s)

Pragmatic oddity

(>,¬x)
SI

(x,¬x)

(b, y)
SI

(x ∧ ¬x, y)
ACT

(x,¬x ∧ y)

Irrelevant obligation

There are similarities between the two problems. However, we feel that the two
should be distinguished. While it is clear that the derivation to the right should
always be blocked, it is less clear whether the one to the left should always be
blocked too. Indeed, one can think of examples in which the pragmatic oddity
does make sense. For instance, if you do not pay the tax you own, you usually
have to pay both a fine and your tax. Furthermore, as we will see in a moment,
a solution to the irrelevant obligation problem may not be a solution to the
pragmatic oddity.

This irrelevant obligation problem was pointed out by Stolpe [21, p. 134],
in relation to MCT/CT. His diagnosis is that plain transitivity is more suitable
for normative reasoning than cumulative transitivity. Plain transitivity is the
rule “From (a, x) and (x, y), infer (a, y)”. We will not follow up on his sugges-
tion: the counter-examples alluded to in the introduction discredit both forms of
transitivity. We are presently studying other ways around. A number of solutions
naturally come into mind. These are listed below.

One first obvious possibility is to restrict the application of ACT, allowing
it to be applied only if, e.g., the output is consistent with the input. This would
solve both problems. This solution is proof-theoretical in nature. It would remaim
to see how to build it in the semantics.

A second possibility is to adopt a more procedural approach, by incorporating
‘backtesting’ into the account:

Backtesting

(A, x) ∈O′3(N) iff ∃A′ ⊆ Cn(A) with (A′, x) ∈ O3(N) and A′ ∪ {x} 6` ⊥

Intuitively, the definition says: for x to be obligatory in context A, it must have
been the case that x was obligatory before the violation occurred, viz in context
A′ ⊆ Cn(A) with A′ consistent with x. Thus, obligations do not ‘drown’ in a
violation context. We leave it to the reader to verify that backtesting filters out
pragmatic oddities.

16 X. Parent and L. van der Torre

A third option is to change the base logic from classical logic to some suit-
able sub-classical logic. In order to resolve the irrelevant obligation problem,
any logic that rejects the principle ex falso quodlibet, {x,¬x} ` y, will do. A
number of paraconsistent logics are available (for an overview, see [19]). Devised
by Dosen[4], the so-called system N is amongst the simplest ones. It may fruit-
fully be used to illustrate the latter point. System N comes with a Kripke-type
possible worlds semantics similar to that used for intuitionistic logic. The main
difference is that the evaluation rules for → and ¬ use separate accessibility
relations. The system is strictly included in Johansson’s well-known system for
minimal negation. One key difference is that, unlike the latter, the former does
not keep ex falso in the following modified form: {x,¬x} ` ¬y. The fact that
such a system would do the job can easily be checked. Put N = {(>,¬x), (b, y)}
and A = {x}. We have

M B M(B)
1. {(>,¬x)} Cn(x,¬x) {¬x}
2. {(>,¬x)(b, y)} Cn(x,¬x) {¬x}

The bottom line is this. System N keeps the principle verum ex quodlibet. This is
the law Γ ` >, where Γ is a set of formulae. So, on line 2, > ∈ B = Cn(x,¬x),
and thus ¬x ∈ M(B). But y 6∈ M(B) because, in the absence of ex falso,
b 6∈ B = Cn(x,¬x). We use system N for illustrative purposes only. It could be
that a more sophisticated paraconsistent logic is needed. Futhermore, to handle
the pragmatic oddity, we need to do more than just let ex falso go away.

Acknowledgments. We thank two anonymous reviewers for valuable com-
ments.

References

1. Broome, J.: Rationality Through Reasoning. Wiley-Blackwell, West Sussex, UK
(2013)

2. Cariani, F.: Ought and resolution semantics. Noûs 47(3), 534–558 (2013)
3. Chisholm, R.: Contrary-to-duty imperatives and deontic logic. Analysis 24, 33–36

(1963)
4. Dosen, K.: Negation in the light of modal logic. In: Gabbay, D., Wansing, H. (eds.)

What is Negation?, pp. 77–86. Springer (1999)
5. Forrester, J.: Gentle murder, or the adverbial Samaritan. Journal of Philosophy

81, 193–197 (1984)
6. Goble, L.: A logic of good, should, and would: Part I. Journal of Philosophical

Logic 19, 169–199 (1990)
7. Goble, L.: A proposal for dealing with deontic dilemmas. In: Lomuscio, A., Nute,

D. (eds.) Proceedings of the Seventh International Workshop on Deontic Logic in
Computer Science (DEON04), pp. 74–113. Springer, Berlin (2004)

8. Goble, L.: Prima facie norms, normative conflicts and dilemmas. In: Gabbay, D.,
Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.) Handbook of
Deontic Logic and Normative Systems, pp. 241–352. College Publications, London.
UK (2013)

I/O Logics without Weakening 17

9. Hansen, J.: Imperative logic and its problems. In: Gabbay, D., Horty, J., Parent,
X., van der Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and
Normative Systems, pp. 499–544. College Publications, London. UK (2013)

10. Hansen, J.: Reasoning about permission and obligation. In: Hansson, S.O. (ed.)
David Makinson on Classical Methods for Non-Classical Problems, pp. 287–333.
Springer (2014)

11. Hansson, S.O.: Preference-based deontic logic (PDL). Journal of Philosophical
Logic 19, 75–93 (1990)

12. Hansson, S.O.: Situationist deontic logic. Journal of Philosophical Logic 26(4),
423–448 (1997)

13. Makinson, D.: On a fundamental problem in deontic logic. In: Namara, P.M.,
Prakken, H. (eds.) Norms, Logics and Information Systems, pp. 29–54. Frontiers
in Artificial Intelligence and Applications, IOS Press, Amsterdam (1999)

14. Makinson, D., van der Torre, L.: Input/output logics. Journal of Philosophical
Logic 29(4), 383–408 (2000)

15. Makinson, D., van der Torre, L.: Constraints for input/output logics. Journal of
Philosophical Logic 30(2), 155–185 (2001)

16. McLaughlin, R.N.: Further problems of derived obligation. Mind 64(255), 400–402
(1955)

17. Parent, X., van der Torre, L.: Aggregative deontic detachment for normative rea-
soning (short paper). In: Eiter, T., Baral, C., Giacomo, G.D. (eds.) Principles of
Knowledge Representation and Reasoning. Proceedings of the 14th International
Conference - KR 14. AAAI Press (2014)

18. Prakken, H., Sergot, M.: Contrary-to-duty obligations. Studia Logica 57, 91–115
(1996)

19. Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook
of Philosophical Logic, vol. 6, pp. 287–393. Springer (2002)

20. Stolpe, A.: Normative consequence: The problem of keeping it whilst giving it
up. In: van der Meyden, R., van der Torre, L. (eds.) Deontic Logic in Computer
Science, 9th International Conference, DEON 2008. Lecture Notes in Computer
Science, vol. 5076, pp. 174–188. Springer (2008)

21. Stolpe, A.: Norms and Norm-System Dynamics. Ph.D. thesis, Department of Phi-
losophy, University of Bergen, Norway (2008)

22. von Wright, G.: Norm and Action: A Logical Enquiry. Routledge & Kegan Paul
PLC (1963)

	Lecture Notes in Computer Science
	Introduction
	Developing the Output by Detachment (out1)
	Reasoning by Cases
	Aggregative Cumulative Transitivity
	Properties
	The Way Forward

