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Abstract

In Input/output (I/O) logic, one makes a distinction between three kinds of permis-
sion, called negative, positive static and positive dynamic permission. They have
been studied semantically and axiomatically by Makinson and van der Torre in the
particular case where the underlying I/O operation for obligation is one of the stan-
dard systems. In this paper, we investigate what happens when the underlying I/O
operation is one of the constrained I/O operations recently introduced by Parent and
van der Torre. Their distinctive feature is two-fold. First, they are not closed under
logical consequence. Second they have a built-in consistency check, which filters out
excess outputs and allows them to properly deal with contrary-to-duty reasoning.
The main contribution of this paper is the characterization of the positive static per-
mission with a set of rules, called subverse rules. Due to the fact that the studied
logics are different from the original framework, although the proof of the character-
ization result is similar to the original one, it still includes novel arguments. This is
the definition of a first positive permission proof system for constrained output.

Keywords: Deontic logic, input/output logic, permission, normative system.

1 Introduction

The aim of this paper is to analyse three kinds of permission operations, derived
from the Input/output (I/O) logics O1 and O3, introduced by Parent and
van der Torre [17]. The analysis looks at negative permission, positive static
permission and positive dynamic permission, such as Makinson and van der
Torre have done in 2003 for the unconstrained I/O logics out1 − out4 [13]. 4

There are two main differences between the older and the newer systems. The
newer systems are augmented with a consistency check. It is this property
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which puts these logics at the level of constrained output, which can deal
with contrary-to-duty (CTD) reasoning. They also lack the weakening of the
output (WO) rule. (WO allows to infer (a, y) from (a, x) and x ` y, where
(a, x) represents the norm that if a, then x ought to be the case, and x ` y
means that y logically follows from x). We analyse the differences that these
changes cause to the different kinds of permissions and try to get rule-sets that
fully characterize the permission operations. This leads us to introduce the
first proof systems for positive permission in terms of constrained output.

With permission being far less studied than obligation, we see it as impor-
tant to give it its fair share of spotlight. In practice, normative codes such
as traffic rules often include both obligatory and permissive norms, and so it
is vital when modeling such rules to have a good understanding of the choice
of permission at hand as well as of the underlying (input/output) logic. As
they lack WO, we argue that O1 and O3 can be better suited for modelling
normative reasoning compared to the out logics. We briefly recall below the
argument given in [14,15] against WO.

WO yields as a special case the principle of conjunction elimination, war-
ranting the move from (a, x ∧ y) to (a, x). As suggested for example by Ham-
blin [7], Goble [6] and Hansen [8, p. 91], such a principle is counter-intuitive in
those cases where x and y are not separable, so that (to quote Hansen) “fail-
ing a part [of the order] means that satisfying the remainder no longer makes
sense. E.g. if I am to satisfy the imperative ‘buy apples and walnuts’, and
the walnuts [...] and the apples [are meant to] land in a Waldorf salad, then it
might be unwanted and a waste of money to buy the walnuts if I cannot get
the apples” [8, p. 91].

WO is also undesirable with respect to the issue of deontic detachment.
Deontic detachment (DD) is the law : from (>, x) and (x, y) infer (>, y), where
> denotes a tautology. It is a special case of the law known as cumulative
transitivity (CT): from (a, x) and (a∧x, y) infer (a, y). Counter-examples have
been given to deontic detachment (see, e.g. [11,3]). They can be blocked by
replacing CT with the following variant rule− we call it “aggregative cumulative
transitivity” (ACT): from (a, x) and (a ∧ x, y) infer (a, x ∧ y). This substitute
rule makes sense only in a system without WO. Here is an example. The
Luxembourgish traffic laws [1] say that if one wants to park one’s car at a
parking spot having a park meter during the times specified on the street
sign, then one should buy a ticket. They also say that, if a parking ticket is
purchased, then it should be put on display inside the vehicle. The obligation
to put the ticket on display no longer holds, if the obligation to pay is violated
(for instance the ticket has been forged). Thus, the correct conclusion is: one
should pay-and-display the ticket.

We believe that the permission operations defined in terms of O1 and O3

are worth studying as well. Similarly to the logics O1 and O3, the permission
operations underlying those new logics also lack the WO rule. They also have
a consistency proviso restraining the application of two rules, one of them
being AND and the other being ACT. This is needed to block the well-known
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pragmatic oddity from [18] among other things.
Regarding WO, the same situation can be expected to arise with “may” as

with “must”. And indeed it does. For illustration’s sake, consider the following
example. Restaurants often have a lunch-menu (l), and typically they have the
option to order a starter (s), a main course (m) and a dessert (d), a starter and
a main course or a main course and a desert. However it is not generally allowed
to order a starter and a desert, without there being a formal prohibition, but
there is a lack of a positive permission. Let (a, x)p denote the conditional
permission to do x given a. We have (l, s ∧m ∧ d)p but not (l, s ∧ d)p. As a
second case, consider a modified version of Feldman’s medication example [5,
p. 87]. Let a and b be two medicines such that medicine a needs medicine b
in order to be safe for use in the treatment of disease d. In that case we have
that (d, a ∧ b)p but not (d, a)p.

There is another class of I/O logics to compare to O1 and O3, namely con-
strained I/O logics [12]. They are better suited for normative reasoning than
unconstrained I/O logics, as they are capable of handling CTD reasoning. We
could, in principle, define the three kinds of permission using constrained I/O
logic as the underlying logic for obligation, similarly as they are defined for
unconstrained I/O logic. The main downside to this approach is that (to our
knowledge) there is no axiomatic characterization of constrained I/O logic that
is “intrinsic”. Straßer et al. [22] provide a dynamic proof theory of constrained
I/O logics−it is that of the adaptive logic (AL) framework (see e.g. [21] for
a general introduction). First, unconstrained and constrained I/O logics are
embedded within some suitable modal logics. Next, the adaptive counterparts
of all the constrained I/O operations are given. Representation results are pro-
vided for the modal characterizations in both the unconstrained setting and the
constrained setting. It would be interesting to investigate the relationship be-
tween their account and ours. We leave this issue as a topic for future research.
One would need to go beyond their framework in its current form, which does
not cover the new I/O logics from [14,16,17] yet, and has no apparatus for
handling positive permissions.

As mentioned above, there are important differences between the classical
I/O logics and the operations O1 and O3. Because of these differences, the
proofs given by Makinson and van der Torre [13] do not always go through.
The formal challenge thus consists in finding alternative proofs to the ones
Makinson and van der Torre give, taking into consideration the nature of the
new logics. We prove the characterization of the positive static permission
operation by its subverse rule-set by showing that a result called the non-
repetition property holds, such as Makinson and van der Torre did. However
since intermediary results do not hold, the proof of the non-repetition property
for O1 is different. For O3, the result is somewhat similar, as it also uses phasing
of the derivation. In the present case the whole derivation cannot be phased,
and one can phase only certain sub-parts of derivations, which is enough to
prove the non-repetition property.

This paper is structured as follows. Section 2 gives the required background
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on I/O logic, section 3 outlines the differences between the classical and the
new I/O logics, sections 4, 5 and 6 present respectively the negative permission,
the static positive permission and the static dynamic permission. Finally, in
section 7 we outline a few directions for future research.

2 Background

This section gives a brief review of the basic notions of I/O logic that are used
throughout this work.

2.1 Semantics

I/O logic uses conditional norms, which are pairs of the form (a, x), where a is
called the body of the norm and x the head of the norm. The norm (a, x) can
be read as if a, then x is obligatory. For a set of norms G, h(G) is the set of all
heads of elements of G and b(G) the set of all bodies of elements of G. G(A)
is defined as {x : (a, x) ∈ G for some a ∈ A}.

The four unconstrained output operations of I/O logic that have first been
introduced are the following, where G is a set of norms, A a set of formulae of a
propositional language, Cn the consequence operation of classical propositional
logic and L the set of all boolean formulae:

Definition 2.1 (Classical unconstrained I/O operations [12])

• Simple-minded output : out1(G,A) = Cn(G(Cn(A)))

• Basic output : out2(G,A) = ∩{Cn(G(V )) : A ⊆ V, V complete}
= ∩{out1(V ) : A ⊆ V, V complete}

A set V is complete iff V = L or V ⊆ L is maximally consistent.

• Reusable simple-minded output :
out3(G,A) = ∩{Cn(G(B)) : A ⊆ B = Cn(B) ⊇ G(B)}

• Reusable basic output :
out4(G,A) = ∩{Cn(G(V )) : A ⊆ V ⊇ G(V ), V complete}

Parent and van der Torre have introduced new logics O1 and O3 correspond-
ing to out1 and out3 with an additional consistency check and without the rule
WO [17]. They solve a problem that was present in the earlier systems: How
to prevent the pragmatic oddity and the drowning problem? The pragmatic
oddity [18] arises from the possibility of detaching a CTD obligation in a vio-
lation context, and aggregating it with its associated primary obligation. The
following is a typical example: “you should keep your promise and apologize
for not keeping it” can be derived from “you should keep your promise”, “if
you do not keep your promise you should apologize” and “you do not keep
your promise” [16]. The drowning problem arises when a primary obligation
no longer holds after a violation has occurred. 5

5 Other approaches are possible. It is often thought that the CTD scenarios involve two
kinds of obligations, prima facie (ideal, etc) obligations vs. all-things-considered (actual, etc)
obligations. [4,20] are two examples of a formal setting articulating such a distinction. Our
take is different. We are interested in obligations which still hold even if violated, as opposed
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Let x a` y stand for (x ` y) and (y ` x). Then the systems Parent and van
der Torre present are defined in the following way:

Definition 2.2 (New I/O logics [17])

• Single-step detachment : x ∈ O1(G,A) iff there exists some finite M ⊆ G and
a set B ⊆ Cn(A) such that M 6= ∅, B = b(M), x a` ∧h(M) and {x} ∪B is
consistent. O1(G) = {(A, x) : x ∈ O1(G,A)}.

• Iterated detachment : x ∈ O3(G,A) iff there exists some finite M ⊆ G and a
set B ⊆ Cn(A) such that M(B) 6= ∅, x a` ∧h(M) and
· ∀B′(B ⊆ B′ = Cn(B′) ⊇M(B′)⇒ b(M) ⊆ B′)
· {x} ∪B is consistent.
O3(G) = {(A, x) : x ∈ O3(G,A)}.

M is called the witness of (A, x).

2.2 Proof Theory

Each of the previously defined output operations have their associated proof
system, called derivi, for i ∈ {1, ..., 4} for the classical I/O logics and Di for
i ∈ {1, 3} for the new ones, each of which consists of the following sets of rules:

• deriv1 = {TAUT, SI, WO, AND}
• deriv2 = {TAUT, SI, WO, AND, OR}
• deriv3 = {TAUT, SI, WO, AND, CT}
• deriv4 = {TAUT, SI, WO, AND, OR, CT}
• D1 = {EQ, SI, R-AND}
• D3 = {EQ, SI, R-ACT}

Where the rule names have the following meaning:

• TAUT - tautology

• SI - strengthening of the input

• WO - weakening of the output

• AND - conjunction of the output

• OR - disjunction of the input

• CT - cumulative transitivity

• EQ - equivalence

• R-AND - restricted AND

• R-ACT - restricted aggregative cu-
mulative transitivity

Those rules are the following:
−

(>,>)
TAUT

(a, x) b ` a
(b, x)

SI

(a, x) x ` y
(a, y)

WO
(a, x) (a, y)

(a, x ∧ y)
AND

(a, x) (b, x)

(a ∨ b, x)
OR

(a, x) (a ∧ x, y)

(a, y)
CT

to obligations satisfying ought-implies-can.
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(a, x) (a, y) a ∧ x ∧ y 6` ⊥
(a, x ∧ y)

R-AND
(a, x) x a` y

(a, y)
EQ

(a, x) (a ∧ x, y) a ∧ x ∧ y 6` ⊥
(a, x ∧ y)

R-ACT

We say that (a, x) ∈ derivi(G) (or Di(G)) iff (a, x) is derivable from G
using the rules of derivi (or Di). We say that (A, x) ∈ derivi(G) (or Di(G))
iff (a, x) ∈ derivi(G) (or Di(G)), where a is a conjunction of formulas in A.
Equivalently, we say that x ∈ derivi(G,A) (or Di(G,A)).

Looking at the proof systems another difference between the classical and
the new systems becomes apparent: the latter lack WO, whereas it is present
in the former ones.

For simplifying derivation representations, let us define a generalized
version of R-AND:

(a, x1) ... (a, xn) a ∧ x1 ∧ ... ∧ xn 6` ⊥
(a, x1 ∧ ... ∧ xn)

G-R-AND

which is a short version of n consecutive R-AND applications.
D1 and D3 are sound and complete w.r.t. the semantics [17], i.e.

(A, x) ∈ Oi(G) iff (A, x) ∈ Di(G) and so Oi and Di can be interchanged when
needed for i ∈ {1, 3}.

We use the notation of O and D when we talk about the output operations
with the consistency check O1 and O3, and out and deriv for the classical
output operations out1-out4.

Parent et al. [14] define the notion of derivation as follows.

Definition 2.3 (Derivation)
Let D be a proof system. A derivation of (a, x) from a set of norms G is a finite
sequence of pairs ending with (a, x), each of which is either an element of G or
follows from earlier pairs in the sequence using the rules of D. The elements
of G being used in a derivation are called the leaves of the derivation, and it
is required that all leaves have a consistent fulfilment, i.e. for all leaves (a, x),
a ∧ x is consistent. The length of a derivation is the length of the sequence.

In this work we mostly represent derivations graphically using proof trees.

3 O versus out

Already at this point there is one significant difference when it comes to O
versus out: whereas out is a closure operation [13], O is not, as it does not
satisfy inclusion: take G = {(x,¬x)}, ¬x 6∈ O(G, x) so G 6⊆ O(G). However
monotony (G ⊆ H ⇒ O(G) ⊆ O(H)) and idempotence (O(O(G)) = O(G))
both hold, as shown below. (Note that one half of idempotence is established
for O1 only.)

Proposition 3.1 (Monotony)
Let O = O1, O3 be an output operation, G,H be sets of norms with G ⊆ H

and let (a, x) ∈ O(G). Then (a, x) ∈ O(H).
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Proof. Assume (a, x) ∈ O(G). By the definitions of O1 and O3, there exists
a witness M for (a, x), with M ⊆ G. As G ⊆ H, one can take the same M as
witness to get that (a, x) ∈ O(H). 2

The following sequence of results leads to showing that the left-in-right
direction of idempotence holds for O1 :

Lemma 3.2 Let O = O1 be an output operation, G be a set of norms. Let M
be the witness for (a, x). Then M does not contain a pair of the form (ai, xi)
with ai ∧ xi ` ⊥.

Proof. Suppose M contains a pair of the form (ai, xi) with ai ∧ xi ` ⊥. We
know, by definition of O1 that x a` ∧h(M), so x ` xi, thus ai ∧ x ` ⊥.
But ai ∈ b(M), so b(M) ∪ {x} ` ⊥ by monotony for `, which contradicts the
definition of the witness M . 2

Lemma 3.3 Let O = O1 be an output operation, G be a set of norms. Let
(a, x) ∈ O(G) and M be the witness for (a, x). Then M ⊆ O(G).

Proof. Let O = O1, (ai, xi) ∈ M . {(ai, xi)} is finite and non-empty, ai ` ai,
xi ` xi and {xi, ai} 6` ⊥ by Lemma 3.2. So (ai, xi) ∈ O(G). 2

Proposition 3.4 (Idempotence, left-to-right)
Let O = O1 be an output operation, G be a set of norms. Then

(a, x) ∈ O(G)⇒ (a, x) ∈ O(O(G)).

Proof. Let (a, x) ∈ O(G) and M = {(a1, x1), ..., (an, xn)} be the witness for
(a, x). By Lemma 3.3, M ⊆ O(G). So (a, x) ∈ O(O(G)). 2

Proposition 3.5 (Idempotence, right-to-left)
Let O = O1, O3 be an output operation, G be a set of norms.

Then (a, x) ∈ O(O(G))⇒ (a, x) ∈ O(G).

Proof. Take (a, x) ∈ O(O(G)). By completeness, there exists a derivation of
(a, x) from O(G) in the corresponding proof system D. We have that every leaf
(ai, xi) ∈ O(G). Let {(a1, x1), ..., (an, xn)} ⊆ O(G) be the enumeration of the
leaves of that derivation. Then there also exists a derivation of (ai, xi) from
G in the corresponding proof system D. Let {(ai1 , xi1), ..., (aim , xim)} ⊆ G
be the enumeration of the leaves of that derivation. We have that every
leaf (aij , xij ) ∈ G for j such that 1 ≤ j ≤ m. Putting those derivations
together, we can get a derivation of (a, x) from G where the leaves are
{(a11 , x11), ..., (anm , xnm)} ⊆ G. By soundness, (a, x) ∈ O(G). 2

4 Negative Permission

Negative permission is the most straightforward permission of the three kinds
we are going to discuss. Something is said to negatively permitted if it is not
prohibited.

Definition 4.1 (Negative permission [13])
Let G be a set of norms and O an output operation. Then (a, x) ∈ negperm(G)
iff (a,¬x) 6∈ O(G).
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We will now discuss if the results on negative permission from Makinson and
van der Torre’s work [13] still hold in this new setting. Let us first look at what
Horn rules the negative permission operation satisfies. In Makinson and van der
Torres’s fashion let us call the premises of the rules of the form (α,ϕ) ∈ O(G) a
substantive premise and the premises of the form θ ∈ Cn(γ) and

∧
(α∧ϕ) 6` ⊥

auxiliary premise. The idea behind the inverse of a Horn rule is the following:
having one or more substantive premises, one takes one of them, negates its
head and puts it as permitted in the conclusion. In retribution one takes the
conclusion, negates its head and puts it as permitted in the premises. The other
premises are left unchanged. Intuitively it says that if a group of conditional
obligations imply some conclusion, which is also a conditional obligation, then
taking all the premises in this group with the exception of one and combining
it with the permission to not do the conclusion, then this implies that we also
have the permission to not do what the excluded obligation stated (otherwise
we would have the obligation of the conclusion). The updated Horn rules fit
rules such as R-AND and R-ACT and their inverses. A Horn rule has the form:

(HR): (αi, ϕi) ∈ O(G) (i ≤ n) & θj ∈ Cn(γj) (j ≤ m)

&

n∧
k=0

(αk ∧ ϕk) 6` ⊥ ⇒ (β, ψ) ∈ O(G)

Its inverse has the form:

(HR)
−1

: (αi, ϕi) ∈ O(G) (i < n) & (β,¬ψ) ∈ negperm(G)

& θj ∈ Cn(γj) (j ≤ m) &

n∧
k=0

(αk ∧ ϕk) 6` ⊥

⇒ (αn,¬ϕn) ∈ negperm(G)

The inverses of each rule are given in Table 1.

Proposition 4.2 Let O = O1, O3 be an output operation. If O satisfies a
rule of the form (HR), then the corresponding negperm operation satisfies the
inverse(s) (HR)−1.

Proof. The proof of EQ is trivial and the proof of SI is similar to the original
paper by Makinson and van der Torre, so we omit them here.
Let G be a set of norms.

• Let O satisfy R-AND, (a, x) ∈ O(G), (a,¬(x ∧ y)) ∈ negperm(G) and
a ∧ x ∧ y 6` ⊥. Then (a, x ∧ y) 6∈ O(G) by definition of negperm. As
(a, x) ∈ O(G) and a∧x∧ y 6` ⊥, by R-AND for O we have (a, y) 6∈ O(G). So
(a,¬y) ∈ negperm(G).

• (i) Let O satisfy R-ACT, (a, x) ∈ O(G), (a,¬(x ∧ y)) ∈ negperm(G) and
a ∧ x ∧ y 6` ⊥. Then (a, x ∧ y) 6∈ O(G) by definition of negperm.
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As (a, x) ∈ O(G) and a ∧ x ∧ y 6` ⊥, by R-ACT for O we have that
(a ∧ x, y) 6∈ O(G), so (a ∧ x,¬y) ∈ negperm(G).

(ii) Let O satisfy R-ACT, (a ∧ x, y) ∈ O(G), (a,¬(x ∧ y)) ∈ negperm(G)
and a ∧ x ∧ y 6` ⊥. Then (a, x ∧ y) 6∈ O(G) by definition of negperm.
As (a ∧ x, y) ∈ O(G) and a ∧ x ∧ y 6` ⊥, by R-ACT for O we have that
(a, x) 6∈ O(G), so (a,¬x) ∈ negperm(G).

2

5 Static Positive Permission

The static positive permission takes into account two explicit sets of norms. A
set G of explicit obligations and a set P of explicit permissions. Something is
said to be statically permitted if one can get it as output from the obligation
set together with a single permission.

Definition 5.1 (Static positive permission [13])
Let G be a set of explicit obligations and P a set of explicit permissions and
O an output operation. Then (a, x) ∈ statperm(P,G) iff (a, x) ∈ O(G ∪Q) for
some Q = {(c, z)} ⊆ P or Q = ∅.

For static permission, the definition yields that O(G) ⊆ statperm(P,G)
as O is monotone. What is different with O than with out is that
statperm is no longer a closure operation in its argument P as inclusion
does not hold: take P = {(x,¬x)}, G = ∅. Then (x,¬x) ∈ P but
(x,¬x) 6∈ statperm(P,G), so P 6⊆ statperm(P,G). However, monotony holds
(P ⊆ Q implies statperm(P,G) ⊆ statperm(Q,G)) as O is monotonous and
idempotence (statperm(P,G) = statperm(statperm(P,G), G)) also holds.

Proposition 5.2 (Idempotence)
Let O = O1, O3 be an output operation.

Then statperm(P,G) = statperm(statperm(P,G), G).

Proof. To show the inclusion from right to left, one can take the same approach
as for Proposition 3.4, using proof theory.

For the other way, assume (a, x) ∈ statperm(P,G), let M be the witness
for (a, x), and B = b(M). By definition, since {x} ∪ B is consistent, M is
also a witness for (B, x) and so (B, x) ∈ statperm(P,G). Now one can take
M ′ = {(B, x)} to be the witness for (a, x) in statperm(statperm(P,G), G), and
thus (a, x) ∈ statperm(statperm(P,G), G). 2

statperm also is not a closure operation in its argument G, as inclu-
sion does not hold: take G = {(x,¬x)}, P = ∅. Then (x,¬x) ∈ G but
(x,¬x) 6∈ statperm(P,G), so G 6⊆ statperm(P,G). Monotony holds as O is
monotonous, but here idempotence fails: take G = ∅, P = {(a, x), (a, y)} such
that a∧x∧y 6` ⊥. Then (a, x∧y) 6∈ statperm(P,G) = O({(a, x)})∪O({(b, y)})
but (a, x ∧ y) ∈ statperm(P, statperm(P,G)) = O({(a, x), (a, y)}).

Let us define the subverse of Horn rules, which are the rules satisfied by
statperm. Here, one of the substantive premises as well as the conclusion of
the Horn rule are changed from being an obligatory norm to being a permis-
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sive norm. This simply says that if we have a set of obligations that imply
another obligation, then having the same set of obligation with the exception
of one premise, which now is a permission, will change the conclusion from an
obligation into a permission:

(HR)
↓
: (αi, ϕi) ∈ O(G) (i < n) & (αn, ϕn) ∈ statperm(P,G)

& θj ∈ Cn(γj) (j ≤ m) &

n∧
k=0

(αk ∧ ϕk) 6` ⊥

⇒ (β, ψ) ∈ statperm(P,G)

The subverses of each Horn rule for O1 and O3 are given in Table 1. We
will now prove a series of results leading up to the proof that the subverse set
is sufficient to characterize the static permission operation statperm. The way
to get there mimics the way Makinon and van der Torre took in 2003 [13].

Proposition 5.3 Let O be O1 or O3. If O satisfies a rule of the form (HR),
then the corresponding statperm operation satisfies the subverse(s) (HR)↓.

We omit the proof, as it is virtually the same as the original one [13].
Makinson and van der Torre have shown that for O the subverse set of

a Horn rule is sufficient to characterize the corresponding static permission
operation [13]. They have established that the problem reduces to showing that
the non-repetition property holds. The non-repetition property is satisfied if for
any (b, y) ∈ O(G ∪ {(c, z)}) there exists a derivation of (b, y) from G ∪ {(c, z)}
using the rules of the corresponding proof system, such that (c, z) is attached
to at most one leaf node.

Proposition 5.4 Consider O1 and D1. Let D be a derivation of (b, y) with a
leaf-set L, in which some leaves are used more than once. Then there exists a
derivation D′ of (b, y) from a leaf-set L′ ⊆ L where every leaf is used at most
once.

The proof given by Makinson and van der Torre [13] in the original frame-
work does not work in the new setting, because of the consistency proviso
restraining the application of AND. We provide an alternative proof, which
also would have worked for the original framework.

Proof. D is a derivation from L to (b, y), so by soundness and completeness,
it holds that y ∈ O1(N, b) for N consisting of the norms present in the leaf-set
L. By definition of O1, ∃M ⊆ N and B ⊆ Cn(b) with B = b(M) and M 6= ∅,
y a` ∧h(M) and {y} ∪B 6` ⊥.

Let {(a1, x1), ..., (an, xn)} = M .
Then a1 ∧ ... ∧ an ∧ x1 ∧ ... ∧ xn a`

∧
B ∧ y 6` ⊥.

As B ⊆ Cn(b), b ` a1 ∧ ... ∧ an =
∧
B. We can thus build the following

derivation. For visual effect we omit the auxiliary premises in the proof tree.
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(a1, x1)
SI

(a1 ∧ ... ∧ an, x1) ...

(an, xn)
SI

(a1 ∧ ... ∧ an, xn)
G-R-AND

(a1 ∧ ... ∧ an, x1 ∧ ... ∧ xn)
SI

(b, x1, ...xn)
EQ

(b, y)

Put L′ = M ⊆ N . This derivation uses all elements of L′ only once, so all
norms of the initial leaf-set L are used at most once. 2

Corollary 5.5 O1 satisfies the non-repetition property.

Corollary 5.6 The subverse set of EQ, SI, R-AND suffices to characterize the
static permission operation based on O1.

Let us look at O3 now. The following result has been adapted from the
original framework [13] to fit O3. This proof is inspired by the work of Makinson
and van der Torre. Similarly to their proof, we are phasing the derivation a
certain way. The difference is that, given the nature of the output operations
we are considering, we are not able to phase the full derivation, and restrict
ourselves to certain sub-derivations.

Lemma 5.7 Let D be a derivation using the rules EQ, SI, R-ACT. Then at
any line l : (a, x) of the derivation:

• the head of l, x, classically implies the head of any line above it in D that l
is based on

• the conjunction of body and head of l, a∧ x, both classically implies the body
and the head of any line above it in D that l is based on

The proof is a straightforward proof by induction on the length of the
derivation, and is omitted here.

Lemma 5.8 Let D = {l1, ..., ln} be a derivation of (b, y) from leaf-set L using
the rules EQ, SI, R-ACT, and let li be a line where R-ACT is applied. Then
there exists a derivation D′ of (b, y) from leaf-set L, which is alike D, except for
the fact that the two sub-derivation above line li follow the order SI, R-ACT,
EQ.

Proof. Consider the derivation D.
. . . (ai, xi) . . . . . . (aj , xj) . . .

(a, x′) (a ∧ x′, x′′) a ∧ x′ ∧ x′′ 6` ⊥
li : (a, x′ ∧ x′′)

R-ACT

(b, y)

. . . . . .
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Let li be a line of the conclusion of an R-ACT rule. Let d1 be the left sub-
derivation, and d2 the right sub-derivation, with (a, x′) and (a∧x′, x′′) as their
respective roots and L(d1), L(d2) as leaf-sets. The rule EQ is invertible both
with SI and R-ACT, it can be applied at any point in the derivation. Without
loss of generality assume that EQ is applied at the bottom of the derivations
d1 and d2. This leaves rules SI and R-ACT above in the upper parts of d1 and
d2. By Lemma 5.7, it holds that a∧ x′ ∧ x′′ ` ak and a∧ x′ ∧ x′′ ` xk for every
norm (ak, xk) from which (a, x′ ∧ x′′) follows in the derivation D, so for all the
lines in d1 and d2. This gives that in d1 and d2, R-ACT followed by SI can be
inverted to SI followed by R-ACT; the following derivation

(b, y1) (b ∧ y1, y2) b ∧ y1 ∧ y2 6` ⊥
R-ACT

(b, y1 ∧ y2) c ` b
SI

(c, y1 ∧ y2)

can be transformed into:

(b, y1) c ` b
SI

(c, y1)

(b ∧ y1, y2) c ∧ y1 ` b ∧ y1
SI

(c ∧ y1, y2) c ∧ y1 ∧ y2 6` ⊥
(c, y1 ∧ y2)

The fact that c ∧ y1 ∧ y2 6` ⊥ follows from

• a ∧ x′ ∧ x′′ ` c
• a ∧ x′ ∧ x′′ ` y1

• a ∧ x′ ∧ x′′ ` y2
• a ∧ x′ ∧ x′′ 6` ⊥

So the derivations d1 and d2 can be phased to SI, R-ACT, EQ. 2

Theorem 5.9 In a derivation using at most the rules EQ, SI, R-ACT and
having two leaves (a, x) and root (b, y), one of those leaves can be eliminated.

Proof. Looking at derivations having two leaves labelled with (a, x), we are
in the following scenario, with the depicted R-ACT node n being the meeting
point of two sub-derivations both containing (a, x):

. . . (a, x) . . . . . . (a, x) . . .

p : (a1, x1) q : (a1 ∧ x1, x2) a1 ∧ x1 ∧ x2 6` ⊥
n : (a1, x1 ∧ x2)

R-ACT

(b, y)

. . . . . .

By Lemma 5.8, we know that those two sub-derivations can be replaced by
derivations where the order of the rules is SI, R-ACT, EQ. Call n the meeting
node of the two sub-trees d1 and d2 containing (a, x), and such that the sub-tree
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with n as root is phased SI, R-ACT, EQ.
The rest of the proof is very similar to the proof Observation 3 (c) done by

Makinson and van der Torre [13]. The rule R-ACT goes from (a, x), (a ∧ x, y)
with a∧ x∧ y 6` ⊥ to (a, x∧ y). We call (a, x) the minor premise and (a∧ x, y)
the major premise. The succession of R-ACT can be written in a way where
no major premise of an application of R-ACT is the conclusion of another
application of R-ACT. This has been shown for ACT [13] (from (a, x) and
(a ∧ x, y) to (a, x ∧ y)), and it still holds for its restricted version.

As node q is a major premise of R-ACT, it is not the conclusion of another
R-ACT application, which means that the sub-tree d2 has as only leaf (a, x)
and root q and uses only one SI. The sub-tree d1 which has p as root uses SI
and R-ACT. By this and by Lemma 5.7, it holds that x2 a` x and x1 ` x. So
x1 a` x1 ∧ x, and one can delete from the tree the sub-tree d2 with root q as
well as node n, leaving a derivation with a single (a, x) node:

(a, x)

(a2, x)
SI

. . .

. . .
SI

...
(a1, x1)

R-ACT

�
��H
HH(a, x)

���
���XXXXXX(a1 ∧ x1, x)

SI

��
���

�XXXXXX(a1, x1 ∧ x)
R-ACT
x1 a` x3

(a1, x3)
EQ

(b, y)

. . . . . .

2

Corollary 5.10 In a derivation using at most the rules EQ, SI, R-ACT and
having multiple leaves (a, x) and root (b, y), all but one of those leaves can be
eliminated.

Corollary 5.11 O3 satisfies the non-repetition property.

Corollary 5.12 The subverse set of EQ, SI, R-ACT suffices to characterize
the static permission operation based on O3.

6 Dynamic Positive Permission

Similarly to the static positive permission, the dynamic positive permission
takes into account a set of obligations G and a set of permissions P . However,
the static positive permission is not a straightforward result of an output oper-
ation. The main idea is that (a, x) is dynamically permitted if adding (a,¬x)
to the set of obligations causes a conditional prohibition of something that is
permitted under that same condition for the set G. This can be understood
as a form of conflict resolution; one allows something, if allowing the opposite
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causes conflicts with the already existing permissions. The definition as found
in the original framework [13] had to be adapted slightly, as there, exact op-
posites are used in order to detect conflicts ((a, x) and (a,¬x)). In the old
systems out1 − out4 this was not a problem, as WO was always present. The
WO rule allowed to include any norm derivable from the exact opposite in this
conflict resolution. In the new systems this can no longer be used as is, because
of the lack of WO. Instead we have to work with collectively inconsistent pairs
so that all those norms that are no longer derivable via WO are still considered
explicitly.

Definition 6.1 (Dynamic positive permission)
Let G be a set of explicit obligations and P a set of explicit permis-

sions and O an output operation. Then (a, x) ∈ dynperm(P,G) iff ∃c, u, v
s.t. (c, u) ∈ O(G ∪ {(a,¬x)}) and a pair (c, v) ∈ statperm(P,G) with u ∧ v
inconsistent and c consistent.

To get a better understanding of how the dynamic permission works and
how it detects conflicts, let us look at the following example.

Example 6.2 Let f denote eating with fingers. c denote clean and e denote
eat. Let us assume that it is always permitted to eat something, but that if
something is not clean, then we should not eat it. So let G and P be such
that (¬c,¬e) ∈ O(G) and (>, e) ∈ statperm(P,G). Then it is dynamically
permitted to not eat with fingers, because adding (>, f) to the obligation set
would allow us to derive (¬c, f) which is in conflict with (¬c,¬e):

(¬c, f) ∈ O(G ∪ {(>, f)}) for (¬c,¬e) ∈ statperm(P,G) with f ∧ ¬e ` ⊥.
So (>,¬f) ∈ dynperm(P,G).

Makinson and van der Torre give a general proof that if an output operation
satisfies a Horn rule, then the dynamic permission operation satisfies its inverse.
We cannot follow the same path as they did, as they use certain properties that
do not hold, such as inclusion. We do not give a general proof, but we show
that for the systems O1 and O3 specifically this holds.

Proposition 6.3 Let O = O1, O3 be an output operation. If O satisfies a Horn
rule of the form (HR), then the corresponding dynamic permission satisfies the
inverse of the Horn rule (HR)−1.

Proof. This proof makes use of the proof theory, as D1 and D3 are sound and
complete w.r.t. O1 and O3 respectively. The relevant Horn rules and their
inverses are given in Table 1.

• EQ is straightforward. Details are omitted.

• Suppose O satisfies SI. Let P and G be such that (a, x) ∈ dynperm(P,G)
and a ` b. We have (c, v) ∈ statperm(P,G) and (c, u) ∈ O(G ∪ {(a,¬x)})
for some u, v and c such that c consistent but u ∧ v ` ⊥. By complete-
ness, (c, u) is derivable from G ∪ {(a,¬x)} in the corresponding proof sys-
tem D. Given SI, (c, u) is derivable from G ∪ {(b,¬x)}. So by soundness
(c, u) ∈ O(G∪{(b,¬x)}), and hence (b, x) ∈ statperm(P,G). Hence dynperm
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satisfies (SI)−1.

• Suppose O satisfies R-AND. Take P and G such that (a, x) ∈ O(G),
(a,¬(x ∧ y)) ∈ dynperm(P,G) and a ∧ x ∧ y 6` ⊥. We have
(c, v) ∈ statperm(P,G) and (c, u) ∈ O(G ∪ {(a, x ∧ y)}) for u, v and c such
that u ∧ v ` ⊥ and c consistent. By completeness, (c, u) is derivable from
G ∪ {(a, x ∧ y)} and (a, x) is derivable from G in the corresponding proof
system D. D has R-AND and a ∧ x ∧ y 6` ⊥. So one can combine the two
derivations to obtain a derivation of (c, u) from G ∪ {(a, y)}. By soundness
(c, u) ∈ O(G ∪ {(a, y)}). This implies (a,¬y) ∈ statperm(P,G), and shows
that dynperm satisfies (R-AND)−1.

• Suppose O satisfies R-ACT.
· Take P and G such that (a, x) ∈ O(G), (a,¬(x∧ y)) ∈ dynperm(P,G) and
a∧x∧y 6` ⊥. Then (c, v) ∈ statperm(P,G) and (c, u) ∈ O(G ∪ {(a, x ∧ y)})
for c, v and u such that c consistent and u∧v ` ⊥. By completeness, (a, x)
is derivable from G, and (c, u) is derivable from G ∪ {(a, x ∧ y)} in the
corresponding proof system D. D has R-ACT as rule and a ∧ x ∧ y 6` ⊥.
One can combine the two derivations to obtain a derivation of (c, u) from
G∪ {(a∧ x, y)}. By soundness (c, u) ∈ O(G∪ {(a∧ x, y)}). It follows that
(a ∧ x,¬y) ∈ dynperm(P,G). Hence dynperm satisfies the first version of
(R-ACT)−1.
· Take P and G such that (a ∧ x, y) ∈ O(G), (a,¬(x ∧ y)) ∈ dynperm(P,G)

and a ∧ x ∧ y 6` ⊥. Then (c, v) ∈ statperm(P,G) and (c, u) ∈ O(G ∪
{(a, x ∧ y)} for such that there is some c, v and u such c consistent and
u ∧ v ` ⊥. By completeness, (a ∧ x, y) is derivable from G and (c, u)
is derivable from G ∪ {(a, x ∧ y)} in the corresponding proof system D.
D has R-ACT and a ∧ x ∧ y 6` ⊥. So one can combine the two deriva-
tions to obtain a derivation of (c, u) from G ∪ {(a, x)}. By soundness,
(c, u) ∈ O(G ∪ {a, x}), andhence(a,¬x) ∈ dynperm(P,G). This shows
that dynperm satisfies the second version of (R-ACT)−1.

2

7 Conclusion and Future Work

In this paper we introduce the first proof systems for permission in terms
of constrained output. We use the two logics of constrained output with a
consistency check. The proofs are generalizations of the proofs of Makinson
and van der Torre for unconstrained output [13]. Only constrained output can
handle CTD reasoning, so O1/O3 together with the permissive norms defined in
this paper is the first approach satisfying the following minimal requirements:

• detachment semantics for obligation and permissive norms (negative, static,
dynamic) which can reason about CTD and dilemmas in a consistent way

• proof systems for these semantics both for obligation and one kind of per-
mission (static)

As topics for future research, we firstly would like to find out whether the
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inverse rule-set is enough to fully characterize the negative permission and the
positive dynamic permission operations. Furthermore, it would be desirable to
find general proofs, as some of the proofs we provided are tailored to O1 and
O3 specifically. This would allow to include any future systems in the analysis.

There are several papers about permission as exception/derogation [2,9,19].
We leave it as a topic for future research to investigate if the account studied
in this paper yield any new insight on this notion.

Finally, we only consider two operations O1 and O3, whereas there are
four classical I/O operations out1-out4. Indeed, only two operations with a
consistency check have been defined so far. The definition of O2/O4 such that
they satisfy all the desired properties remains an open problem.

References

[1] Recueil de Législation Routière, http://legilux.public.lu/eli/etat/leg/code/

route/20190531, accessed: 2019-06-12.
[2] Boella, G. and L. van der Torre, Permissions and Obligations in Hierarchical Normative

Systems, in: Proceedings of the 9th International Conference on Artificial Intelligence
and Law, ICAIL ’03 (2003), p. 109–118.

[3] Cariani, F., Deontic logic and natural language, in: D. Gabbay, J. Horty, X. Parent,
R. van der Meyden and L. van der Torre, editors, Handbook of Deontic Logic and
Normative Systems, College Publications, London, 2020 Volume 2. To appear.

[4] Carmo, J. and A. J. I. Jones, Deontic logic and contrary-to-duties, in: D. M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic: Volume 8 (2002), pp. 265–343.

[5] Feldman, F., “Doing the Best We Can: An Essay in Informal Deontic Logic,” D. Reidel
Publishing Company, 1986.

[6] Goble, L., A logic of good, should, and would: Part I, Journal of Philosophical Logic 19
(1990), pp. 169–199.

[7] Hamblin, C., “Imperatives,” Oxford, 1987.
[8] Hansen, J., “Imperatives and Deontic logic,” Ph.D. thesis, University of Leipzig (2008).
[9] Hansen, J., Reasoning about permission and obligation, in: S. O. Hansson, editor, David

Makinson on Classical Methods for Non-Classical Problems, Springer Netherlands,
Dordrecht, 2014 pp. 287–333.

[10] Hansson, S. O., The varieties of permission, in: D. Gabbay, J. Horty, X. Parent,
R. van der Meyden and L. van der Torre, editors, Handbook of Deontic Logic and
Normative Systems, College Publications, London, 2013 pp. 195–240, volume 1.

[11] Lassiter, D., “Graded Modality,” Oxford University Press, 2017.
[12] Makinson, D. and L. van der Torre, Input/output logics, Journal of Philosophical Logic

29 (2000), pp. 383–408.
[13] Makinson, D. and L. van der Torre, Permission from an input/output perspective,

Journal of Philosophical Logic 32 (2003), pp. 391–416.
[14] Parent, X., D. Gabbay and L. an der Torre, Intuitionistic basis for input/output logic, in:

S. O. Hansson, editor, David Makinson on Classical Methods for Non-Classical Problems,
Springer Netherlands, Dordrecht, 2014 pp. 263–286.

[15] Parent, X. and L. van der Torre, I/O logics without weakening, To appear in Filosofiska
Notiser.

[16] Parent, X. and L. van der Torre, The pragmatic oddity in norm-based deontic logics, in:
G. Governatori, editor, Proceedings of the 16th Edition of the International Conference
on Articial Intelligence and Law, ICAIL ’17 (2017), p. 169–178.

[17] Parent, X. and L. van der Torre, I/O logics with a consistency check, in: J. Broersen,
C. Condoravdi, S. Nair and G. Pigozzi, editors, Deontic Logic and Normative Systems
(2018), pp. 285–299.

http://legilux.public.lu/eli/etat/leg/code/route/20190531
http://legilux.public.lu/eli/etat/leg/code/route/20190531


18 Input/output logic with a consistency check - the case of permission

[18] Prakken, H. and M. Sergot, Dyadic deontic logic and contrary-to-duty obligations, in:
D. Nute, editor, Defeasible Deontic Logic, Kluwer Academic Publishers, Dordrecht, 1997
pp. 223–262.

[19] Stolpe, A., A theory of permission based on the notion of derogation, Journal of Applied
Logic 8 (2010), pp. 97 – 113.

[20] Strasser, C., A deontic logic framework allowing for factual detachment, Journal of
Applied Logic 9 (2010), pp. 61–80.

[21] Straßer, C., “Adaptive Logics for Defeasible Reasoning. Applications in Argumentation,
Normative Reasoning and Default Reasoning,” Trends in logic 38, Springer, Berlin, 2014.

[22] Straßer, C., M. Beirlaen and F. V. D. Putte, Adaptive logic characterizations of
input/output logic, Studia Logica 104 (2016), pp. 869–916.


	Introduction
	Background
	Semantics
	Proof Theory

	O versus out
	Negative Permission
	Static Positive Permission
	Dynamic Positive Permission
	Conclusion and Future Work
	References

