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ABSTRACT
The ideal worlds of a possible worlds semantics may satisfy both

a primary obligation and an associated secondary obligation, for

example the obligation to keep a promise and the obligation to

apologise for not keeping it. This is known as the pragmatic oddity

introduced by Prakken and Sergot. We argue that an adequate

treatment of the pragmatic oddity within a norm-based semantics

can be obtained, by not allowing primary and secondary obliga-

tions to aggregate, because they are obligations of a di�erent kind.

On the basis of this conceptual analysis, we introduce two logics,

depending on the stance taken on the representation of normative

con�icts, and we present sound and complete proof systems for

these logics. We then give a formal analysis, discuss extensions,

and highlight various topics for further research.
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•Theory of computation → Logic; •Computing methodolo-
gies → Knowledge representation and reasoning; •Applied
computing→ Law;
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1 INTRODUCTION
Deontic logic has proved useful to the study of legal reasoning.

Modelling so-called contrary-to-duty (CTD) reasoning remains one

of its main challenges. Roughly speaking, this is the problem of

how to reason about norm violation. There is a large literature on

this issue, with roughly two groups of approaches. Those in the

�rst group use a possible worlds semantics[2, 3, 8, 15, 30, 31, 34].

Those in the second use what Hansen [14] calls a “norm-based

semantics”. The core idea is to explain the laws of deontic logic

not by some set of possible worlds among which some are ideal or
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at least better than others, but with reference to an explicit set of

norms or an existing (legal, moral, etc) standard. The semantics

is based on the notion of detachment, and draws on techniques

developed for non-monotonic reasoning. The use of non-monotonic

techniques goes back to at least Horty [18], and it has been studied

in greater depth in Nute [27] and Horty [19]. Norm-based semantics

goes back to Makinson [23], and it has been further developed by

Makinson and van der Torre [24, 25] and Hansen [11–13] among

others. Makinson [23] contrasts two traditions of research, one on

deontic logic, and the other (which has roots in Alchourrón and

Bulygin [1]) on normative systems. Norm-based semantics aims at

unifying the two into a single formalism.

There is widespread agreement in the literature that an adequate

deontic logic should be able to handle CTD reasoning. Jones and Ser-

got [21] have pointed out that structures of the “contrary-to-duty"

type, in which the legal consequences of the violation of some pri-

mary obligation are speci�ed, are quite common in the law. Should

a deontic logic not able to model them, it would, of course, fail in

its attempt at formalising legal reasoning. Although full-blooded,

sophisticated accounts of CTDs within the possible world semantics

tradition are now available [2, 3, 8, 31], not much work has been

carried out in order to assess how well norm-based semantics fare

when it comes to CTDs. With this question in mind, we focus on

the input/output (I/O) logic initially developed by Makinson and

van der Torre [24], and we will look at the question of how it can

handle what Prakken and Sergot [30] call the “pragmatic oddity".

They introduce and discuss it with reference to frameworks with a

possible world semantics. We argue that norm-based semantics in

general, and I/O logic in particular, is faced with a similar problem.

Our own diagnosis is that we should not aggregate primary and sec-

ondary obligations, because they are of di�erent kind. On the basis

of this conceptual analysis, we introduce two logics, depending on

the stance taken on the representation of normative con�icts, and

we present sound and complete proof theories for these logics. In

the aforementioned paper Jones and Sergot have shown how some

of the most subtle and di�cult issues currently being investigated

in the literature on deontic logic could arise naturally even in ap-

parently mundane examples of law. They have shown it, by taking

the example of CTDs. The notion of normative con�ict, we believe,

provides another good illustration of this.

This paper is organised as follows. In Section 2, we explain and

discuss the pragmatic oddity. In Section 3, we present our logics.

In Section 4, we discuss possible extensions, and highlight various

topics for further research. Section 5 gives a summary of the paper.

We include the proofs of the theorems in the main text because

they are not very long nor very complex, and they will give the

reader a good insight in the formal machinery.
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2 PRAGMATIC ODDITY
2.1 The problem
To our knowledge, the term “pragmatic oddity" �rst occurred in

Prakken and Sergot [30]’s paper on CTDs. In there they study the

proper representation of contrary-to-duty structures, situations in

which there is a primary obligation and what they call a secondary

obligation, which comes into e�ect when the primary obligation is

violated. The term “pragmatic oddity" is introduced with reference

to the formalisation in SDL [4] of a common type of CTD structures,

like the following one:

Example 2.1.
(1) You should keep your promise, ©k .

(2) If you haven’t kept your promise, you should apologise,

¬k → ©a.

(3) You haven’t kept your promise, ¬k .

They point out that in SDL both ©k and ©a hold, and go on to

say that:

“It is a bit odd to say that in all ideal versions of this

world you keep your promise and you apologise

for not keeping it. This oddity—we might call

it a ‘pragmatic oddity’—seems to be absent from

the natural language version, which means that

the SDL representation is not fully adequate." [30,

p. 95]

Prakken and Sergot also point out that for examples containing a

temporal element a solution is available, in the form of temporal

deontic logics. They argue that the temporal solution is not always

available, since sometimes the primary and CTD rule pertain to the

same point in time. To support their claim, they give the example

of a set of holiday cottage regulations on keeping dogs:

Example 2.2.
(1) There should be no dog, ©¬d ;

(2) If there is a dog, then there ought to be a warning sign,

d → ©s;
(3) There is a dog, d .

They make the same observation:

“Surely, it is strange to say that in all ideal worlds

there is no dog and also a warning sign that there

is no dog." [30, p. 96]

This second formulation makes it clear that “odd" means “counter-

intuitive". Furthermore, the explicit reference to the semantics of

SDL (“in all ideal worlds ...") may sound like as if the pragmatic

oddity is a semantical problem, that arises only when taking into

account the speci�c model-theoretic meaning given to the formulas

in question in SDL. It is di�cult to say if Prakken and Sergot think

so. Be that as it may, they develop their own solution, which con-

sists in modifying the representation of a CTD obligation. Thus, (2)

in example 2.2 is rendered asd ⇒ ©ds , where⇒ denotes a suitably

de�ned conditional operator satisfying factual detachment. The

expression ©ds is intended to be read as “there is a secondary obli-

gation that s , presupposing the sub-ideal context d". The pragmatic

oddity is avoided because, once detached, ©ds does not transport

up to©s . The authors motivate their approach by invoking the fact

that “primary and CTD obligations are obligations of a di�erent

kind: a CTD obligation pertains to, or presupposes, a certain con-

text in which a primary obligation is already violated". [30, p. 91].

They also stress that “there is no meaningful sense [...] in which

the obligation ©s can be detached from the expression ©¬ds". [30,

p. 100]

2.2 Non-monotonic methods
The main emphasis in the literature on contrary-to-duty examples

is on cases where, instead of a pragmatic oddity, we have a case

of con�icting obligations which has to be avoided. The sentences

are intuitively consistent. Yet the logic makes them inconsistent.

The problem of such intuitively coherent examples of contrary

to duty structures is that it is hard to �nd a consistent and also

otherwise acceptable formalisation. Prakken and Sergot consider

the following example.

Example 2.3.

(1) There must be no fence, ©¬f ;

(2) If there is a fence then it must be a white fence, f → ©w ;

(3) There is a fence, f .

In this connection, Prakken and Sergot discuss the idea, defended

by McCarty [26] among others, that CTD reasoning is just an in-

stance of defeasible reasoning. This question arises naturally from

the above example, since the main problem was how to deal with

con�icting primary and secondary obligations, while one of the

virtues of non-monotonic logics is that they are intended to cope

with con�icting information. One possible reading is that (1) has

been formulated as a defeasible rule, and that (2) takes e�ect in

these exceptional circumstances: there is no con�ict, because the

two rules do not apply to the same circumstances. Another possible

reading—which can be regarded as a special case of the �rst— is

that (2) itself expresses an exception to (1): on this reading the prob-

lem of inconsistency is resolved by regarding the exceptional rule

(2) as defeating the general rule (1) in the circumstances in which

they both apply. And a natural way of formalising this reading

is to adopt or adapt some suitable formalism for non-monotonic

reasoning.

Prakken and Sergot argue that a drawback of the use of non-

monotonic techniques is that it is di�cult to distinguish this case

from regular exceptions, like in the rule: if the cottage is by the

sea, there may be a fence. Van der Torre and Tan [33] study this

problem and distinguish many faces of defeasibility in deontic

logic, distinguishing in particular between overshadowing for CTD

structures, and cancelling for regular exceptions like the cottage by

the sea. What is important for our present discussion is that it even

if non-monotonic techniques can deal with the cottage regulations,

it is less clear how they deal with the pragmatic oddity. In that

sense, the pragmatic oddity is a more challenging example than the

traditional CTD examples.

2.3 Requirements
Carmo and Jones [2] formulate a number of requirements that must

be met by any adequate treatment of CTDs–we will endorse them

all:

(R1) Consistency of the formalisation of the CTD scenario;
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(R2) Logical independence;

(R3) Applicability to (at least apparently) timeless CTD exam-

ples;

(R4) Uniform representation of norms

(R5) Ability to detach (ideal and actual) obligations

(R6) Ability to avoid the pragmatic oddity

(R7) Ability to represent the fact that a violation has occurred

(R1) and (R2) are self-explanatory. (R3) is motivated by Prakken

and Sergot’s observation that the primary and CTD rule some-

times pertain to the same point in time. (R4) constitutes a point

of disagreement between Carmo/Jones and Prakken/Sergot, and

will follow the �rst ones rather than the second ones. Accord-

ing to Prakken and Sergot, a contrary-to-duty obligation and an

according-to-duty obligation must be given a di�erent represen-

tation. This is dictated by their own treatment of the pragmatic

oddity. Carmo and Jones reject this point of view because it makes

the representation dependant on updates: if one wants to introduce

new CTDs or remove norms, one has to modify the norms already

expressed.

We understand (R7) as an ability to detect violation of a norm.

We add the following two requirements:

(R7’) No ‘drowning’ e�ect

(R8) Ability to allow for a certain amount of agglomeration, like

in Horty’s example.

(R7’) is linked with (R7). This requirement was suggested by M.

Sergot (in private, to the �rst author), with reference to some de-

ontic logics based on non-monotonic logic, like the one developed

by Makinson and van der Torre in [25]. Such logics do not face

the pragmatic oddity, but this comes at a high price: when a viola-

tion occurs, the primary obligation ceases to exist. For instance, in

example 2.1, given ¬k , ©k no longer holds. Re�ecting on the use

of logic programming techniques in legal applications, Herrestad

makes the same point:

“The non-monotonic properties of a logic program

using negation-by-failure make a consistent rep-

resentation [of CTDs] possible. However, the pro-

gram will have certain counter-intuitive proper-

ties. For instance, violated obligations simply van-

ish. Nothing more can be inferred about them, as

the condition for something being obligatory no

longer applies. One might argue that in actual life

violated obligations do not vanish."[16]

(R8) is motivated by our own treatment of the pragmatic oddity.

From Prakken and Sergot, we keep the idea that primary and CTD

obligations are of di�erent kind. Our proposal is not to allow them

to aggregate using the AND rule, because of this di�erence in

nature.

©x ©y
AND ©(x ∧ y)

However, we agree with Horty [18] that a certain degree of agglom-

eration should be allowed in order to account for some aspects of

normative reasoning in every day life. Consider:

Example 2.4 (Horty).
(1) You ought either to �ght in the army or perform alternative

service, ©(f ∨ s);

(2) You ought not to �ght in the army, ©¬f .

From these two sentences one should be able to derive the conjoined

obligation not to �ght in the army and to perform alternative service,

©(¬f ∧ s). Obviously, this will not be possible unless one can �rst

derive the conjoined obligation not to �ght in the army and to �ght

in the army or do alternative service, ©(¬f ∧ (f ∨ s)).

3 TWO LOGICS
In this section we introduce two logics, depending on the stance

taken on the representation of dilemmas or con�icts between obli-

gations, situations where an agent ought to performs two actions

that turn out to be incompatible with one another. We also present

sound and complete proof theories for these logics. We show how

they handle the pragmatic oddity. The basic idea is to restrict the

application of the AND rule.

3.1 Background on input/output (I/O) logic
I/O logic falls within the category of what has been called “norm-

based semantics” [14]. The core idea is to explain the laws of

deontic logic not by some set of possible worlds among which some

are ideal or at least better than others, but with reference to an

explicit set of given norms or existing (legal, moral, etc) standards.

The meaning of the deontic concepts is given in terms of a set of

procedures yielding outputs for inputs. Detachment (or modus-

ponens) is the core mechanism of the semantics being used. In

I/O logic, a conditional obligation is represented as a pair (a,x) of

boolean formulae, where a is the body (antecedent) and x is the

head (consequent). A normative system N is a set of such pairs.

Our main construct is x ∈ O(N ,a), which intuitively can be read as

follows: given input a (state of a�airs), x (obligation) is in the output

under norms N . We also use the equivalent notation: (a,x) ∈ O(N ).
The proof-theory is given in terms of inference rules manipulating

pairs of Boolean formulas instead of formulas.

3.2 Semantics
We use the standard notation (>,x) for the unconditional obligation

of x , where > stands for a tautology like a ∨ ¬a. L is the set of all

formulae of classical propositional logic. Given an input A ⊆ L,

and a normative system N , N (A) denotes the image of N under A,

i.e., N (A) = {x : (a,x) ∈ N for some a ∈ A}. Cn(A) denotes the set

{x : A ` x}, where ` is the deducibility relation used in classical

propositional logic. The notation x a` y is short for x ` y and

y ` x . We use PL as an abbreviation for (classical) propositional

logic. h(M) denotes the set of all the heads of the pairs in M , and

b(M) denotes the set of all the bodies of the pairs in M . For future

reference, we recall some basic facts from PL:

Proposition 3.1.

If A ⊆ B then Cn(A) ⊆ Cn(B) (monotony)

If A ⊆ B ⊆ Cn(A) then Cn(B) ⊆ Cn(A) (cumulative transitivity)

Cn(A) = Cn(Cn(A)) (idempotence)

As usual, a set A ⊆ L of formulae is said to be consistent if

A 0 ⊥, and inconsistent otherwise. (⊥ stands for a contradiction

like x ∧ ¬x .)
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In this paper we only consider the simple minded I/O operation

from Makinson and van der Torre [25]. The operation is written

as O. Compared to their I/O operation, de�nition 4.4 has three

salient features. First, de�nition 4.4 requires x to be equivalent to

the conjunction of heads of rules in some M ⊆ N , rather than to

be implied by such a conjunction. This has the e�ect of letting the

rule of weakening of the output go (see example 3.3 below). Second,

de�nition 4.4 looks at what is triggered by some B ⊆ Cn(A), instead

of looking at what is triggered by A. Third, de�nition 4.4 uses the

consistency proviso ii). The last two features give a “backward-

looking" �avour to our account. To determine if x is obligatory, we

(so to speak) go back in time, before the violation has occurred, and

we check if x was already obligatory at that point in time, in the

sense of being equivalent with the conjunction of heads of rules in

some M ⊆ N .

De�nition 3.2. x ∈ O(N ,A) i� there is a �nite set of norms M ⊆
N and a set B ⊆ Cn(A) such that M(B) , ∅ and

i) x a` ∧M(B)
ii) For all (a,x) ∈ M , we have {a,x} ∪ B is consistent

Curly brackets will be omitted for singleton input set A..

In order to give the reader a taste of how the account works, we

apply it to a number of examples.

Example 3.3 (Ross’ paradox). Let N = {(>,p), where p is for

posting a letter, A = {>}. p is outputted in context >, viz p ∈
O(N ,>). But p∨b is not outputted in context>, viz p∨b < O(N ,>).
Intuitively, from the obligation to post a letter, one does not derive

the obligation to post a letter or burn it.

Example 3.4 (Pragmatic oddity). Let N = {(>,k), (¬k,a)} and

A = {¬k}. k is outputted in context ¬k , viz k ∈ O(N ,¬k). Intu-

itively, once violated, the primary obligation to keep one’s promise

still holds. Hence the drowning possible is avoided. a is also out-

putted in context ¬k , viz a ∈ O(N ,¬k). Intuitively, the secondary

obligation to apologise is detached. But the joined obligation to

keep one’s promise and apologise for not keeping it does not hold,

viz. k ∧ a < O(N ,¬k).
Example 3.5 (Horty). Let N = {(>, f ∨ s), (>,¬f )} and A = {>}.

s ∧ ¬f is outputted in context >, viz s ∧ ¬f ∈ O(N ,>). Intuitively,

the joined obligation to perform an alternative military service and

not go into the army is detached, as it should be.

In Table 1, we apply the account to some other well-known

examples from literature. This will help the reader appreciate what

is going on. The �rst column contains a reference to the paper

in which the example was �rst described. The second and third

column show a formalisation of the example in I/O logic, although

many of them were �rst introduced in monadic deontic logic. The

last two columns show the output. A “yes" indicates a formula that

is outputted. A “no" indicates a formula that is not outputted.

Theorem 3.6 states that O is monotonic with respect to the input

set.

Theorem 3.6 (Monotony w.r.t. input). Given a set A of formu-
lae and a formula a, we have O(N ,a) ⊆ O(N ,A)whenever a ∈ Cn(A).

Proof. Assume x ∈ O(N ,a) and a ∈ Cn(A). From the �rst

assumption, there is some �nite M ⊆ N and some B ⊆ Cn(a) such

that M(B) , ∅ and

Table 1: Deontic benchmark examples

N A yes no

[5] (>, ¬k ), (k, k ∧ д) k ¬k , k ∧ д ⊥
[30] (>, ¬c), (k, c) k ¬c , c , ⊥
[18] (>, ¬f ′), (a, f ′) a ¬f ′, f ′, ⊥
[30] (>, ¬f ), (f , f ∧w ), (d, f ) d ¬f , f , ⊥
[37] (r, c′) r ∧ s c′

(r, c′), (s, ¬c′) r ∧ s c′, ¬c′ ⊥
[35] (>, p), (>, ¬p) > p, ¬p, ⊥
[36] (>, p) ¬(p ∧ h) p

(>, p), (>, h) ¬(p ∧ h) p, h, p ∧ h p ∧ ¬h
[31] (>, ¬d ), (d, d ∧ p′) d ¬d , d ∧ p′, ⊥

(>, ¬(d ∧ p′) ¬(d ∧ p′)
k : kill c : cigarette p : polite

д: gently d : dog h: honest

f : fence r : rain a: asparagus

w : white s : sun c ′: close

f ′: �nger p′: poodle

i) x a` ∧M(B)
ii) For all (a,x) ∈ M , we have {a,x} ∪ B is consistent

From the second assumption, {a} ⊆ Cn(A), and so Cn(a) ⊆ Cn(A),
by monotony for ` and idempotence. Hence B ⊆ Cn(A), which

su�ces for x ∈ O(N ,A). �

3.3 Proof theory
De�nition 3.7 (Proof system). (a,x) ∈ D?(N ) if and only if (a,x)

is derivable from N using the rules {SI, EQ, R-AGGR}.

(a,x) b ` a
SI (b,x)

(a,x) x a` y
EQ

(a,y)

(a,x) (a,y)
R-AGGR a ∧ x and a ∧ y are consistent

(a,x ∧ y)
Furthermore, for each leave (b,y) in the derivation, b∧y is required

to be consistent.

SI stands for “strengthening of the input". EQ stands for “equiva-

lence". R-AGGR stands for “restricted aggregation".

Where A is a set of formulae, (A,x) ∈ D?(N )means that (a,x) ∈
D?(N ), for some conjunctiona of elements inA. Moreover,D?(N ,A)
is {x : (A,x) ∈ D?(N )}.

Proposition 3.8. Given SI, R-AGGR is equivalent to

(a,x) (b,y)
R-AGGR′ a ∧ b ∧ x and a ∧ b ∧ y are consistent

(a ∧ b,x ∧ y)

Proof.

• R-AGGR⇒ R-AGGR
′
. The last step in the derivation below

goes through, because a ∧b ∧ x and a ∧b ∧y are assumed

to be consistent.

(a,x)
SI (a ∧ b,x)

(b,y)
SI (a ∧ b,y)

R-AGGR (a ∧ b,x ∧ y)
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• R-AGGR
′⇒ R-AGGR. The �rst step in the derivation below

goes through, because a∧a∧x and a∧a∧y are equivalent

with a ∧ x and a ∧ y, respectively.

(a,x) (a,y)
R-AGGR

′
(a ∧ a,x ∧ y)

SI (a,x ∧ y)
�

Theorem 3.9. O validates the rules of D (for input a).

Proof. For SI and EQ, the argument is straightforward, and

omitted. We show R-AGGR. Assume that x ∈ O(N ,a) and y ∈
O(N ,a), and that each of a ∧ x and a ∧ y is consistent. From the

�rst hypothesis, there is a �nite M1 ⊆ N and a set B1 ⊆ Cn(a) such

that M1(B1) , ∅ and

i) x a` ∧M1(B1)
ii) For all (b,y) ∈ M1, we have {b,y} ∪ B1 is consistent.

From the second hypothesis, there is a �nite M2 ⊆ N and a set

B2 ⊆ Cn(a) such that M2(B2) , ∅ and

i) x a` ∧M2(B2)
ii) For all (b,y) ∈ M2, we have {b,y} ∪ B2 is consistent.

De�ne M−
1
= {(c, z) ∈ M1 : c ∈ B1} and M−

2
= {(c, z) ∈ M2 :

c ∈ B2}. Intuitively, M−
1

is M1 “stripped of" all the pairs that are

not triggered by B1, and M−
2

is M2 stripped of all the pairs that

are not triggered by B2. By construction, M−
1
(B1) = M1(B1) and

M−
2
(B2) = M2(B2). So x a` ∧M−

1
(B1) and y a` ∧M−

2
(B2). Put

M3 = M−
1
∪M−

2
and B3 = B1 ∪ B2. M3 is �nite. We have M3 ⊆ N

and B3 ⊆ Cn(a). Furthermore, M3(B3) = M−
1
(B1) ∪M−

2
(B2), so that

x ∧ y a` ∧M−
1
(B1) ∧ (∧M−2 (B2)) a` ∧M3(B3)

It remains to verify that M3 and B3 meet condition ii) in de�nition

4.4. Let (b,y) ∈ M3. Note that each of {a} ∪ M−
1
(B1) and {a} ∪

M−
2
(B2) is consistent, since each of a∧x and a∧y is consistent. Now,

assume, to reach a contradiction, that {b,y} ∪ B3 is inconsistent,

viz. {b,y} ∪ B3 ` ⊥. By monotony for `,
{a,b,y} ∪ B3 ` ⊥ (1)

But either (b,y) ∈ M−
1

or (b,y) ∈ M−
2

, so that either b ∈ B1 or

b ∈ B2, by construction. Hence, a ` b, since B3 = B1 ∪ B2 ⊆ Cn(a).
By cut for `,

{a,y} ∪ B3 ` ⊥ (2)

Since B3 ⊆ Cn(a), a ` b ′ for all b ′ ∈ B3. By cut again,

{a,y} ` ⊥ (3)

But eithery ∈ M−
1
(B1) ory ∈ M−

2
(B2). So by monotony for `, either

{a} ∪M−
1
(B1) ` ⊥ or {a} ∪M−

2
(B2) ` ⊥. Contradiction. �

Theorem 3.10 (Soundness). D?(N ,A) ⊆ O(N ,A).

Proof. The proof is on the length of the derivation, using The-

orem 3.6 and Theorem 3.9. We only run the veri�cations for the

base case, because it explains the consistency check run on the

leaves of a derivation. Given: (a,x) ∈ N ; a ∧ x is consistent. To

show: x ∈ O(N ,a). M is {(a,x)}, and B is such that a ∈ B ⊆ Cn(a).
M(B) = {x}. Because a∧x is consistent, {a∧x}∪B is consistent. �

Theorem 3.11 (Completeness). O(N ,A) ⊆ D?(N ,A)

Proof. Assume x ∈ O(N ,A). Hence there is a �nite M ⊆ N and

some B ⊆ Cn(A) such that M(B) , ∅ and

i) x a` ∧M(B)
ii) For all (b,y) ∈ M , {b,y} ∪ B is consistent.

De�ne M− = {(b,y) ∈ M : b ∈ B}. We have x a` ∧M−(B). Let

(b1,y1), ..., (bn ,yn ) be an enumeration of all the elements of M−.

By de�nition of M−, {b1, ...,bn } ⊆ B. By ii), for all i such that

1 ≤ i ≤ n, yi ∧ b1 ∧ .. ∧ bn is consistent. Thus, for all i such

that 1 ≤ i ≤ n, yi ∧ bi is a fortiori consistent. Since B ⊆ Cn(A),
a? ` b1 ∧ ... ∧ bn , where a? is a conjunction of elements in A. A

derivation of (A,x) from M−, and hence from N , is shown below:

(b1,y1) . . . . . . (bn ,yn )
R-AGGR

′
(b1 ∧ ... ∧ bn ,y1 ∧ ... ∧ yn )

EQ

(b1 ∧ ... ∧ bn ,x)
SI

(a?,x)

This is a derivation of (A,x), as a? is a conjunction of elements

in A. �

3.4 Normative con�icts
The logic described in the previous section has been tailored for

CTDs. Another important issue in deontic logic is the represen-

tation of normative con�icts, situations where an agent ought to

performs two actions that turn out to be incompatible with one

another. These two issues should not be confused. In this sec-

tion, we introduce a second logic, which is meant to accommodate

normative con�icts as well.

For the purpose of this paper, we take the notion of normative

con�ict in its narrowest sense as suggested by, e.g., Kelsen [22].

We shall assume the instances of normative con�icts are identi�ed

through the so-called impossibility-of-joint-compliance test. There

is a con�ict when it is not possible for a norm subject to comply with

two obligations. The notion of normative con�ict can also be taken

in a broader sense, to cover prohibitions and permissions, or legal

powers [17]. But this broader sense goes beyond the expressive

power of our formal apparatus, and must be left as a topic for future

research.

Jones and Sergot [21] have shown how some of the most subtle

and di�cult issues currently being investigated in the literature

on deontic logic could arise naturally even in apparently mundane

examples of law. They have shown it, by taking the example of

CTDs. The notion of normative con�ict, we believe, provides an-

other good illustration of this. Tenants of so-called legal pluralism

[10] would say that a legal order can contain multiple rules of recog-

nition that lead to the order containing multiple, unranked, legal

sources. These rules of recognition are inconsistent, and there is

the possibility that they will, in turn, identify inconsistent rules

addressed to individuals. In addition, pluralist orders lack a legal

mechanism able to resolve the inconsistency. Now, the question

of how to accommodate the existence of con�icts is not an easy

one to answer, as witnessed by the large literature devoted to it in

deontic logic. We refer the reader to Goble [6]’s overview chapter

for a critical analysis of the di�erent options that have been ex-

plored by deontic logicians. In there available formal frameworks
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are thoroughly tested against three main requirements, which we

will endorse here:

(R9) Con�icting obligations should be consistent:

{©x ,©¬x} 0 ⊥
(R10) No deontic explosion:

{©x ,©¬x} 0 ©y
(R11) Ability to account for the validity of seemingly valid infer-

ence patterns, like the one exhibited in Horty’s example,

example 3.5:

{©¬x ,©(x ∨ y)} ` ©(¬x ∧ y)
It is not di�cult to see that the account described in the previous

section meets the last two requirements, but not the �rst one. This

is due to the consistency proviso being used:

(a,x) (a,¬x)
R-AGGR (a,⊥)

We now introduce a second logic that also meets these three

requirements all together. The operation is written as O?
. The

basic idea is to strengthen the consistency check being used when

calculating the output: all the norms in M must be taken into

account collectively. On the syntactical side, R-AGGR is replaced

with

(a,x) (a,y)
R-AGGR

? a ∧ x ∧ y is consistent

(a,x ∧ y)
We give the formal details below.

De�nition 3.12. x ∈ O?(N ,A) i� there is a (�nite) set of norms

M ⊆ N and a set B ⊆ Cn(A) such that M(B) , ∅ and

i) x a` ∧M(B)
ii) b(M) ∪ h(M) ∪ B is consistent

Proposition 3.13. O?(N ,A) ⊆ O(N ,A).

Proof. This follows from the fact that, if the consistency proviso

ii) in de�nition 4.5 is met, then so is the consistency provision ii) in

de�nition 4.4. �

Note that the analogue of theorem 3.6 (monotony w.r.t. input)

holds.

The reader may easily verify that in example 3.5 de�nition 4.5

yields the same result as de�nition 4.4.

Example 3.14 (Dilemmas, cont’d). Let N = {(a,x), (a,¬x)} and

A = {a}. We have x ∈ O?(N ,a). Witness: M = {(>,a)} and

B = {a}. We also have ¬x ∈ O?(N ,a). Witness: M = {(a,¬x)} and

B = {a}. But x∧¬x < O?(N ,a). For x∧¬x to be outputted, M must

be N and B must be such that a ∈ B ⊆ Cn(a). But {a,x ,¬x} ∪ B is

inconsistent.

De�nition 3.15 (Proof system). (a,x) ∈ D?(N ) if and only if (a,x)
is derivable from N using the rules {SI, EQ, R-AGGR

?
}

(a,x) (a,y)
R-AGGR

? a ∧ x ∧ y is consistent

(a,x ∧ y)
For each leave (b,y) of the derivation, b ∧ y is required to be con-

sistent.

The analogue of proposition 3.8 holds:

Proposition 3.16. Given SI, R-AGGR? is equivalent to

(a,x) (b,y)
R-AGGR?− a ∧ b ∧ x ∧ y is consistent

(a ∧ b,x ∧ y)
Theorem 3.17. O? validates the rules of D? (for input a).

Proof. For SI and EQ, the argument is straightforward, and

omitted. For R-AGGR
?

, we only need run through the proof for

R-AGGR again, and verify that M3 and B3 meet condition ii) in

de�nition 4.5. Note that a∧(∧M3(B3)) is consistent, because a∧x∧y
is assumed to be consistent. Now, assume, to reach a contraction,

that b(M3) ∪ h(M3) ∪ B3 ` ⊥. By monotony for `, {a} ∪ b(M3) ∪
h(M3) ∪ B3 ` ⊥. Since b(M3) ⊆ B3 ⊆ Cn(a), by cut {a} ∪ h(M3) `
⊥. But h(M3) = M3(B3), and so a ∧ (∧M3(B3)) is inconsistent.

Contradiction. �

Theorem 3.18 (Soundness). D?(N ,A) ⊆ O?(N ,A)

Proof. The argument is virtually the same as for theorem 3.10.

�

Theorem 3.19 (Completeness). O?(N ,A) ⊆ D?(N ,A)

Proof. We only need run through the proof of theorem , and

check that R-AGGR
?
− can be applied where R-AGGR

′
was applied.

From the opening hypothesis, b(M) ∪ h(M) ∪ B is consistent. It a

fortiori follows that b(M−) ∪ h(M−), and hence b1 ∧ .. ∧ bn ∧ y1 ∧
... ∧ yn , is consistent. �

3.5 Evaluation and formal analysis
In traditional input/output logic, a distinction between uncon-

strained and constrained output is made. This is useful for the

evaluation, so we do the same here. We call the corresponding

operator O− where the minus symbol re�ects the absence of the

constraint. Note that due to the absence of the constraint, more

obligations are derived.

De�nition 3.20. x ∈ O−(N ,A) i� there is a (�nite) set of norms

M ⊆ N and a set B ⊆ Cn(A) such that M(B) , ∅ and x a` ∧M(B).

The following result can be derived from results of Parent and

van der Torre [29].

Theorem 3.21. O−(N ,A) is completely characterized by the three
rules of strengthening of the input, replacements of logical equivalents
in the output, and unrestricted aggregation.

Table 2 and 3 list some properties, which are motivated and

discussed by Parent and van der Torre [28, 29]. We only give a

brief explanation here, and refer to these two papers for a more

extensive discussion.

In Table 2, exact factual detachment (efd) and violation detec-

tion (vd) characterise what is special about deontic logic, while

substitution (sub), replacements of logical equivalents (rle), impli-

cation (imp) and paraconsistency (pc) say something about logic.
We use the notation x[σ ] to denote a substitution instance of x .

Thus, x[σ ] is obtained from x by replacing uniformly, in x , all

occurrences of a propositional letter by the same propositional

formula. A[σ ] and N [σ ] extend the notion of substitution instance

to sets of formulae, and sets of norms in the straightforward way.

We write N ≈ M whenever M is obtained from N , by replacing

each (b,y) ∈ N with some (c, z) such that b is equivalent with c ,

and y is equivalent with z. Implication makes use of the so-called
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Table 2: Properties [28]

efd (x ,y) ∈ N ⇒ y ∈ O(N ,x)
vd (A,y) ∈ O(N ) ⇒ (A ∪ {¬y},y) ∈ O(N )
sub x ∈ O(N ,A) ⇒ x[σ ] ∈ O(N [σ ],A[σ ])
rle N ≈ M ⇒ O(N ) ⊆ O(M)
imp O(N ,A) ⊆ Cn(m(N ) ∪A)
pc x ∈ V (N ,A) ⇒ ∃M ⊆ N : x ∈ O(M,A)

and O(M,A) ∪A consistent

nm O(N ) ⊆ O(N ∪M)
ni M ⊆ O(N ) ⇒ O(N ) = O(N ∪M)

materialisationm(N ) of a normative system N , which means that

each norm (a,x) is interpreted as a material conditional a → x ,

i.e. as the propositional sentence ¬a ∨ x . We distinguish between

violated obligations V (N ,A) = {x ∈ O(N ,A) | ¬x ∈ Cn(A)} and

non-violations (or actual obligations) V (N ,A) = O(N ,A) \V (N ,A).
Moreover, norm monotony (nm) and norm induction (ni) are called

“norm change properties", because the normative system N is no

longer held constant.

Theorem 3.22. The input/output logicsO andO∗ satisfy the prop-
erties in Table 2, except for sub and ni.

Proof (sketch). efd holds due to the consistency constraint on norms
requiring for all (a,x) ∈ N that a ∧ x is consistent in propositional
logic, vd holds due to monotonicity with respect to input (Th 3.6),
rle follows immediately from SI and EQ, imp holds already for the
unconstrained operator O−, and pc and nm are immediate from the
de�nition of O . A counterexample for sub: N = {(a,x)}, replace x
by ¬a. Counterexample ni: (a ∧ ¬x ,x) ∈ O(N ), but we cannot add
(a ∧ ¬x ,x) to N .

The most interesting cases are the properties that do not hold.

Lack of substitution may be surprising at �rst sight, though it

is common for non-monotonic logic. Moreover, we can de�ne

restricted versions of sub and ni that do hold. We consider here only

ni. We say that M is consistent when each (a,x) in M is consistent,

and (a,x) is consistent i� a ∧ x is consistent in propositional logic.

r-ni consistent M ⊆ O(N ) ⇒ O(N ) = O(N ∪M)

r-ni is an important property. Together, exact factual detach-

ment, norm monotony and norm induction are equivalent to re-

quiring that O(N ) is a closure operator. Though ni does not hold,

r-ni is strong enough to prove our completeness results in Section

3. If ni fails completely, then no such completeness result would be

possible. We give an example in Section 4.2.

Moreover, the reusability properties in Table 3 relate the system

to traditional I/O logic: consequence (Cn), inclusion in reusable

output (io), redundancy (r) and strong redundancy (sr). Their

formulation appeals to some key notions of so-called constrained

input/output logic, developed by Makinson and van der Torre [2001]

in order to reason about norm violation. Following Parent and van

der Torre [28, 29], we only consider the input/output constraint.

One of the distinguishing properties of traditional constrained in-

put/output logic is that it leads to a set of extensions, where each

extension is a set of formulas.

out(N ,A) = Cn(N (Cn(A)))
conf(N ,A) = {N ′ ⊆ N | out(N ′,A) ∪A consistent }
maxf(N ,A) = {N ′ ∈ conf(N ,A) | N ′ ⊆ -maximal }
outf(N ,A) = {O(N .A) | N ′ ∈ maxf(N ,A) }

Table 3: Properties [28, 29]

Cn out(N ,A) = Cn(O(N ,A))
io O(N ) ⊆ O−(N ) ⊆ out(N )
r outf(N ,A) = outf(O(N ),A)
sr outf(N ∪M,A) = outf(O(N ) ∪M,A)

Theorem 3.23. The input/output logicsO andO∗ satisfy the prop-
erties in Table 3.

Proof (sketch). Note that N can be assumed to be consistent. Cn and
io can be shown by inspecting the semantic conditions, and r and sr
can be shown by structural induction on O(N ).

We end the evaluation with a �nal observation. It makes use

again of V (N ,A) representing the actual obligations in circum-

stances A. Though aggregation is restricted, it says that actual obli-

gations are closed under aggregation. Thus, it is only for obligations

of distinct contexts, such as primary and secondary obligations,

that aggregation is restricted.

Theorem 3.24. If p,q ∈ V (N ,A), then p ∧ q ∈ V (N ,A).

We �nally note that Jones and Porn [20] introduced the distinc-

tion between actual and ideal obligations, and their analysis has

played a major role in the history of deontic logic, including the

work of Prakken and Sergot and the work of Carmo and Jones on

the pragmatic oddity. A more detailed comparison is left to further

research.

4 EXTENSIONS
In the previous section we introduced the weakest logics of norma-

tive systems. As done in the traditional input/output logic frame-

work, the minimal system can be extended to handle for example

reasoning by cases and deontic detachment. In this section we

consider such extensions.

4.1 Adding consequential closure
It seems most straightforward to extend the semantics with conse-

quential closure, as follows.

De�nition 4.1. x ∈ O1(N ,A) i� there is a (�nite) set of norms

M ⊆ N and a set B ⊆ Cn(A) such that M(B) , ∅ and

i) x ∈ Cn(M(B))
ii) For all (a,x) ∈ M , we have {a,x} ∪ B is consistent

De�nition 4.2. x ∈ O?
1
(N ,A) i� there is a (�nite) set of norms

M ⊆ N and a set B ⊆ Cn(A) such that M(B) , ∅ and

i) x ∈ Cn(M(B))
ii) b(M) ∪ h(M) ∪ B is consistent
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Theorem 4.3. These two input/output operations satisfy all prop-
erties in Table 1 and 2, except for sub and ni. Moreover, they do not
satisfy r-ni.

Proof. The proof of the properties is analogous to the proof of the
properties for the operators without consequential closure. The main
di�erence is r-ni. We give a counterexample. Let N = {(>,p ∧
q), (¬q, r )}. We have (>,p) ∈ O1(N ) and (¬q,p ∧ r ) < O1(N ). More-
over, we have (¬q,p ∧ r ) ∈ O1(N ∪ {(>,p)}).

This has far reaching consequences. At �rst sight it may seem

that for the proof system of this I/O operation we just have to add

the following rule of weakening of the output (WO) to the above

set of proof rules of O .

(a,x ∧ y)
(a,x) WO

However, if we would add WO, we would derive unsound conse-

quences. For example, if we write D1 for D plus WO, then we would

have (¬q,p ∧ r ) ∈ D1(N ) in the example in the proof. In general

we have that O1(N ) and O∗
1
(N ) are not consequence operators, and

thus we cannot axiomatize it in the way we axiomitized O and O∗.

4.2 Reasoning by cases
Reasoning by cases can easily be implemented by adding the dis-

junction rule:

(a,x), (b,x)
(a ∨ b,x)

The challenge is to �nd a suitable semantics. We conjecture

it means generating cases in the semantics in the following way,

where a complete set B is a maxi-consistent set, that is, it is consis-

tent and each strict extension is inconsistent.

De�nition 4.4. x ∈ O2(N ,A) i� for all complete B containing A,

we have x ∈ O1(N ,B).

De�nition 4.5. x ∈ O?
2
(N ,A) i� for all complete B containing A,

we have x ∈ O?
1
(N ,B).

4.3 Deontic detachment
Deontic detachment is more di�cult to implement in the semantics,

but it can easily be realized in the proof theory. As argued by Parent

and van der Torre [29], the following aggregative version of deontic

detachment could be adopted.

ACT
(a,x), (a ∧ x ,y)
(a,x ∧ y) if a ∧ x ∧ y are consistent

The challenge is to de�ne a semantics for it. We note here that

this approach does not su�er from Stolpe’s so-called irrelevance

obligation problem, which derives from (>,a) and (b, c) the obliga-

tion for c in the context ¬a. For example, the consistency constraint

blocks the following derivation.

(>,a)
SI (¬a,a) (b, c)

ACT(¬a,a ∧ c)

5 MODAL INPUT/OUTPUT LOGIC
A natural next step is to change the base logic from PL to the modal

logic KD. This has the advantage that we can represent not only reg-

ulative norms (with Oα in head), but also permissive norms (with

Pα in head), and we can distinguish regulative norms from consti-

tutive ones (with factual sentence α in head). Moreover, this move

would give us the required expressive power to talk and reason

about conditional norms having a deontic formula as antecedent,

as in Governatori’s paradox [7]. it contains a conditional norm

whose body and head are permissions: “the collection of medical

information is permitted provided that the collection of personal

information is permitted." The above is a topic for future research,

as there are also various challenges. In this section, we highlight the

challenge that, in order to handle the pragmatic oddity, one would

need to run the consistency check in modal logic KT, obtained by

replacing the D axiom ©x → Px with the axiom ©x → x . This

would lead to the following de�nition:

De�nition 5.1. x ∈ O(N ,A) i� there is a �nite set of norms M ⊆
N and a set B ⊆ CnKD (A) such that M(B) , ∅ and:

i) x a`KD ∧M(B)
ii) For all (a,x) ∈ M , we have {a,x} ∪ B is consistent in KT

The following example illustrates the modal input/output logic.

Example 5.2 (Pragmatic oddity, ct’d). Consider the modal norms

N = {(>,©k), (¬k,©a)} and A = {¬k}. Put M = N and B =
{>,¬k}. We have ©(k ∧a) a`KD ∧M(B). Suppose the consistency

check ii) is run in KD. {>,©k,¬k} is consistent in KD, so that

©(k ∧ a) ∈ O(N ,A). Suppose the consistency check ii) is run in KT.

{>,©k,¬k} is not consistent in KT, and so ©(k ∧ a) < O(N ,A).

6 FURTHER RESEARCH
We believe that there are still new questions and challenges re-

garding contrary to duty reasoning. We mention three of these

challenges in this section.

6.1 Not so odd
We �rst give an example from the well studied library regulations

[21], where the pragmatic oddity does not sound odd.

Example 6.1.

(1) Bring back the books within two weeks, ©b.

(2) If you haven’t brought back the books within two weeks,

pay a penalty, ¬b → ©p
(3) You haven’t brought back the books within two weeks, ¬b.

The derivation of the obligation to bring back the goods and pay a

penalty ©(b ∧ p) does not sound odd at all.

This is a particular property of the library regulations, and it

also holds in many examples of commerce—but not always. For

example, suppose you need to deliver a wedding cake, then once

the obligation is violated, there is no longer the need to deliver it.

Thus, the challenge is to formally distinguish the library regulation

example from the other examples of pragmatic oddities discussed in

this paper. We believe that we should make time and in particular

deadlines explicit to formally distinguish these cases.
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6.2 Sanctions
We may de�ne sanctions as obligations conditional on a violation:

¬α ∧ ©α → ©β . For example, in the library example just above,

the second line could be formalised as a sanction:

(2) If you haven’t brought back the books within two weeks

but you should have, pay a penalty, ¬b ∧ ©b → ©p.

Also, in the pragmatic oddity, the apology could be represented as

a sanction, i.e. ¬k ∧ ©k → ©a.

This class of contrary to duty examples can be studied in modal

input/output logic.

6.3 Fluents
Fluent are properties of the world which can change over time, and

are sometimes distinguished from events and actions. A typical

example discussed in the deontic logic literature is the cooler of a

fence in the cottage regulations. The challenge with �uents in the

context of contrary to duty reasoning arises in the context of a vio-

lation. For example, suppose we have the rules that there should be

no fence, but if there is a fence it should be white. Moreover, assume

there is a black fence. We can derive two con�icting instructions:

(1) Remove the fence

(2) Paint the fence white

This becomes even more challenging for the rarely discussed

multi level obligations, where besides a primary and a secondary

obligation there are also tertiary and higher level obligations. Con-

sider again an example by Prakken and Sergot:

(1) You should not go on the road with your bike

(2) If you’re on the road, you should be staying on the extreme

right side of the road

(3) If you’re not on the extreme right side of the road, you

should be staying on the extreme left side of the road.

If, for one reason or the other, you are in the middle of the road, (1)

tells you should not be on the road, (2) tells you should keep your

right, and (3) that you should keep your left. We are convinced that

no parent will give his or her child this contradictory advice. The

imperatives are extremely confusing, and the child will not be able

to decide what to do based on these commands.

7 SUMMARY
The pragmatic oddity has been presented by Prakken and Sergot

as a problem for the possible worlds semantics of deontic logic:

what does it mean to say that the ideal worlds satisfy both that you

keep your promise (k), and that you apologise (a) for not keeping

it? This may suggest that the pragmatic oddity does not occur in

norm-based semantics, as we do not have ideal worlds. However,

as we argue in this paper, in norm-based semantics we can de�ne

the pragmatic oddity as the derivation of the obligation ©(k ∧ a).
In addition, we argue that both ©(k) and ©(a) should be de-

tached, the �rst to represent that ¬k is a violation, the second to

represent the cue for action to apologise. The problem of the prag-

matic oddity is thus turned into a problem of aggregation. This

re�ects that the aggregation rule should not combine primary and

secondary obligations. They refer to di�erent contexts, sometimes

called the ideal and actual obligations.

We present two logics, one in the tradition of standard deontic

logic in which dilemmas are inconsistent, as represented by the

so-called deontic D axiom ¬(©p ∧ ©¬p), and one in which such

dilemmas can be represented in a consistent way. We prove com-

pleteness, give an evaluation by a list of formal properties, and we

sketch how to extend the logics with other reasoning patterns such

as reasoning by cases and deontic detachment.

A particularly interesting case is the addition of consequential

closure. The input/output logics of Makinson and van der Torre

satisfy this rule, to stay as close as possible to classical logic. Carmo

and Jones reject it in their analysis of contrary-to-duty reasoning,

following Chellas. Following Stolpe [32] also several input/output

logics without consequential closure have been de�ned. As we show

in this paper, constrained output with consequential closure does

not satisfy norm induction, and thusO(N ) is not a closure operator.

This explains why Makinson and van der Torre only provide a proof

system for their unconstrained logics, but not for the constrained

ones: it is impossible. We believe this provides another argument

for the adoption of deontic logics without consequential closure.

We have listed several topics of further research, such as in-

put/output logics which have a modal logic as their base logic,

and new challenges regarding contrary-to-duty reasoning. More-

over, an important question is whether the ways of handling the

pragmatic oddity in possible worlds semantics and in norm-based

semantics are related. Here the analogy of violated obligation and

actual obligation with ideal and actual obligations may be useful.

Finally, we have shown that the pragmatic oddity as an aggrega-

tion problem comes down to separating the primary and secondary

obligations. Governatori and Rotolo [9] have introduced a logic

where this is explicit in the syntax. How such an approach could

be incorporated in the norm-based semantics is another topic for

further research.
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